Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 75


CARD9 Is Required for Classical Macrophage Activation and the Induction of Protective Immunity against Pulmonary Cryptococcosis.

Campuzano A, Castro-Lopez N, Martinez AJ, Olszewski MA, Ganguly A, Leopold Wager C, Hung CY, Wormley FL Jr.

mBio. 2020 Jan 7;11(1). pii: e03005-19. doi: 10.1128/mBio.03005-19.


Epigenetic stabilization of DC and DC precursor classical activation by TNFα contributes to protective T cell polarization.

Eastman AJ, Xu J, Bermik J, Potchen N, den Dekker A, Neal LM, Zhao G, Malachowski A, Schaller M, Kunkel S, Osterholzer JJ, Kryczek I, Olszewski MA.

Sci Adv. 2019 Dec 4;5(12):eaaw9051. doi: 10.1126/sciadv.aaw9051. eCollection 2019 Dec.


Expression profile of porcine scavenger receptor A and its role in bacterial phagocytosis by macrophages.

Xiang X, Zhang Y, Li Q, Wei J, Liu K, Shao D, Li B, Olszewski MA, Ma Z, Qiu Y.

Dev Comp Immunol. 2020 Mar;104:103534. doi: 10.1016/j.dci.2019.103534. Epub 2019 Nov 2.


TNF-α-Producing Cryptococcus neoformans Exerts Protective Effects on Host Defenses in Murine Pulmonary Cryptococcosis.

Fa Z, Xu J, Yi J, Sang J, Pan W, Xie Q, Yang R, Fang W, Liao W, Olszewski MA.

Front Immunol. 2019 Jul 26;10:1725. doi: 10.3389/fimmu.2019.01725. eCollection 2019.


Sho1 and Msb2 Play Complementary but Distinct Roles in Stress Responses, Sexual Differentiation, and Pathogenicity of Cryptococcus neoformans.

So YS, Jang J, Park G, Xu J, Olszewski MA, Bahn YS.

Front Microbiol. 2018 Dec 4;9:2958. doi: 10.3389/fmicb.2018.02958. eCollection 2018.


Victors: a web-based knowledge base of virulence factors in human and animal pathogens.

Sayers S, Li L, Ong E, Deng S, Fu G, Lin Y, Yang B, Zhang S, Fa Z, Zhao B, Xiang Z, Li Y, Zhao XM, Olszewski MA, Chen L, He Y.

Nucleic Acids Res. 2019 Jan 8;47(D1):D693-D700. doi: 10.1093/nar/gky999.


Clinical application of a multiplex genetic pathogen detection system remaps the aetiology of diarrhoeal infections in Shanghai.

Wang S, Yang F, Li D, Qin J, Hou W, Jiang L, Kong M, Wu Y, Zhang Y, Zhao F, Fang Y, Miao Y, Xu L, Chen J, Bao Z, Olszewski MA, Zhao H, Zhang Y.

Gut Pathog. 2018 Sep 11;10:37. doi: 10.1186/s13099-018-0264-7. eCollection 2018.


Autocrine IL-10 Signaling Promotes Dendritic Cell Type-2 Activation and Persistence of Murine Cryptococcal Lung Infection.

Teitz-Tennenbaum S, Viglianti SP, Roussey JA, Levitz SM, Olszewski MA, Osterholzer JJ.

J Immunol. 2018 Oct 1;201(7):2004-2015. doi: 10.4049/jimmunol.1800070. Epub 2018 Aug 10.


Erratum for Xu et al., "Disruption of Early Tumor Necrosis Factor Alpha Signaling Prevents Classical Activation of Dendritic Cells in Lung-Associated Lymph Nodes and Development of Protective Immunity against Cryptococcal Infection".

Xu J, Eastman AJ, Flaczyk A, Neal LM, Zhao G, Carolan J, Malachowski AN, Stolberg VR, Yosri M, Chensue SW, Curtis JL, Osterholzer JJ, Olszewski MA.

mBio. 2018 May 29;9(3). pii: e01039-18. doi: 10.1128/mBio.01039-18. No abstract available.


CD4+ T Cells Orchestrate Lethal Immune Pathology despite Fungal Clearance during Cryptococcus neoformans Meningoencephalitis.

Neal LM, Xing E, Xu J, Kolbe JL, Osterholzer JJ, Segal BM, Williamson PR, Olszewski MA.

mBio. 2017 Nov 21;8(6). pii: e01415-17. doi: 10.1128/mBio.01415-17.


Anti-PD-1 Antibody Treatment Promotes Clearance of Persistent Cryptococcal Lung Infection in Mice.

Roussey JA, Viglianti SP, Teitz-Tennenbaum S, Olszewski MA, Osterholzer JJ.

J Immunol. 2017 Nov 15;199(10):3535-3546. doi: 10.4049/jimmunol.1700840. Epub 2017 Oct 16.


Exploitation of Scavenger Receptor, Macrophage Receptor with Collagenous Structure, by Cryptococcus neoformans Promotes Alternative Activation of Pulmonary Lymph Node CD11b+ Conventional Dendritic Cells and Non-Protective Th2 Bias.

Xu J, Flaczyk A, Neal LM, Fa Z, Cheng D, Ivey M, Moore BB, Curtis JL, Osterholzer JJ, Olszewski MA.

Front Immunol. 2017 Sep 28;8:1231. doi: 10.3389/fimmu.2017.01231. eCollection 2017.


RIPK3/Fas-Associated Death Domain Axis Regulates Pulmonary Immunopathology to Cryptococcal Infection Independent of Necroptosis.

Fa Z, Xie Q, Fang W, Zhang H, Zhang H, Xu J, Pan W, Xu J, Olszewski MA, Deng X, Liao W.

Front Immunol. 2017 Sep 1;8:1055. doi: 10.3389/fimmu.2017.01055. eCollection 2017.


T Cell-Restricted Notch Signaling Contributes to Pulmonary Th1 and Th2 Immunity during Cryptococcus neoformans Infection.

Neal LM, Qiu Y, Chung J, Xing E, Cho W, Malachowski AN, Sandy-Sloat AR, Osterholzer JJ, Maillard I, Olszewski MA.

J Immunol. 2017 Jul 15;199(2):643-655. doi: 10.4049/jimmunol.1601715. Epub 2017 Jun 14.


Scavenger Receptor MARCO Orchestrates Early Defenses and Contributes to Fungal Containment during Cryptococcal Infection.

Xu J, Flaczyk A, Neal LM, Fa Z, Eastman AJ, Malachowski AN, Cheng D, Moore BB, Curtis JL, Osterholzer JJ, Olszewski MA.

J Immunol. 2017 May 1;198(9):3548-3557. doi: 10.4049/jimmunol.1700057. Epub 2017 Mar 15.


Glucosylceramide synthase inhibition alleviates aberrations in synucleinopathy models.

Sardi SP, Viel C, Clarke J, Treleaven CM, Richards AM, Park H, Olszewski MA, Dodge JC, Marshall J, Makino E, Wang B, Sidman RL, Cheng SH, Shihabuddin LS.

Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2699-2704. doi: 10.1073/pnas.1616152114. Epub 2017 Feb 21.


Immunoregulation in Fungal Diseases.

Roussey JA, Olszewski MA, Osterholzer JJ.

Microorganisms. 2016 Dec 10;4(4). pii: E47. Review.


Systemic Approach to Virulence Gene Network Analysis for Gaining New Insight into Cryptococcal Virulence.

Malachowski AN, Yosri M, Park G, Bahn YS, He Y, Olszewski MA.

Front Microbiol. 2016 Oct 27;7:1652. eCollection 2016.


Validation of a High-Throughput Multiplex Genetic Detection System for Helicobacter pylori Identification, Quantification, Virulence, and Resistance Analysis.

Zhang Y, Zhao F, Kong M, Wang S, Nan L, Hu B, Olszewski MA, Miao Y, Ji D, Jiang W, Fang Y, Zhang J, Chen F, Xiang P, Wu Y, Zhao H.

Front Microbiol. 2016 Sep 7;7:1401. doi: 10.3389/fmicb.2016.01401. eCollection 2016.


Direct detection of Helicobacter pylori in biopsy specimens using a high-throughput multiple genetic detection system.

Zhang Y, Wang S, Hu B, Zhao F, Xiang P, Ji D, Chen F, Liu X, Yang F, Wu Y, Kong M, Nan L, Miao Y, Jiang W, Fang Y, Zhang J, Bao Z, Olszewski MA, Zhao H.

Future Microbiol. 2016 Dec;11:1521-1534. Epub 2016 Sep 6.


Disruption of Early Tumor Necrosis Factor Alpha Signaling Prevents Classical Activation of Dendritic Cells in Lung-Associated Lymph Nodes and Development of Protective Immunity against Cryptococcal Infection.

Xu J, Eastman AJ, Flaczyk A, Neal LM, Zhao G, Carolan J, Malachowski AN, Stolberg VR, Yosri M, Chensue SW, Curtis JL, Osterholzer JJ, Olszewski MA.

mBio. 2016 Jul 12;7(4). pii: e00510-16. doi: 10.1128/mBio.00510-16. Erratum in: mBio. 2018 May 29;9(3):.


Sensitivity of dendritic cells to NK-mediated lysis depends on the inflammatory environment and is modulated by CD54/CD226-driven interactions.

Smith LE, Olszewski MA, Georgoudaki AM, Wagner AK, Hägglöf T, Karlsson MC, Dominguez-Villar M, Garcia-Cozar F, Mueller S, Ravens I, Bernhardt G, Chambers BJ.

J Leukoc Biol. 2016 Oct;100(4):781-789. Epub 2016 Mar 31.


A high-throughput multiplex genetic detection system for Helicobacter pylori identification, virulence and resistance analysis.

Hu B, Zhao F, Wang S, Olszewski MA, Bian H, Wu Y, Kong M, Xu L, Miao Y, Fang Y, Yang C, Zhao H, Zhang Y.

Future Microbiol. 2016 Oct;11:1261-1278. Epub 2016 Mar 29.


Local GM-CSF-Dependent Differentiation and Activation of Pulmonary Dendritic Cells and Macrophages Protect against Progressive Cryptococcal Lung Infection in Mice.

Chen GH, Teitz-Tennenbaum S, Neal LM, Murdock BJ, Malachowski AN, Dils AJ, Olszewski MA, Osterholzer JJ.

J Immunol. 2016 Feb 15;196(4):1810-21. doi: 10.4049/jimmunol.1501512. Epub 2016 Jan 11.


Role of dendritic cell-pathogen interactions in the immune response to pulmonary cryptococcal infection.

Eastman AJ, Osterholzer JJ, Olszewski MA.

Future Microbiol. 2015;10(11):1837-57. doi: 10.2217/fmb.15.92. Review.


STAT1 signaling within macrophages is required for antifungal activity against Cryptococcus neoformans.

Leopold Wager CM, Hole CR, Wozniak KL, Olszewski MA, Mueller M, Wormley FL Jr.

Infect Immun. 2015 Dec;83(12):4513-27. doi: 10.1128/IAI.00935-15. Epub 2015 Sep 8.


Cryptococcal heat shock protein 70 homolog Ssa1 contributes to pulmonary expansion of Cryptococcus neoformans during the afferent phase of the immune response by promoting macrophage M2 polarization.

Eastman AJ, He X, Qiu Y, Davis MJ, Vedula P, Lyons DM, Park YD, Hardison SE, Malachowski AN, Osterholzer JJ, Wormley FL Jr, Williamson PR, Olszewski MA.

J Immunol. 2015 Jun 15;194(12):5999-6010. doi: 10.4049/jimmunol.1402719. Epub 2015 May 13.


Cryptococcus neoformans-induced macrophage lysosome damage crucially contributes to fungal virulence.

Davis MJ, Eastman AJ, Qiu Y, Gregorka B, Kozel TR, Osterholzer JJ, Curtis JL, Swanson JA, Olszewski MA.

J Immunol. 2015 Mar 1;194(5):2219-31. doi: 10.4049/jimmunol.1402376. Epub 2015 Jan 30.


Molecules at the interface of Cryptococcus and the host that determine disease susceptibility.

Wozniak KL, Olszewski MA, Wormley FL Jr.

Fungal Genet Biol. 2015 May;78:87-92. doi: 10.1016/j.fgb.2014.10.013. Epub 2014 Nov 1. Review.


Early or late IL-10 blockade enhances Th1 and Th17 effector responses and promotes fungal clearance in mice with cryptococcal lung infection.

Murdock BJ, Teitz-Tennenbaum S, Chen GH, Dils AJ, Malachowski AN, Curtis JL, Olszewski MA, Osterholzer JJ.

J Immunol. 2014 Oct 15;193(8):4107-16. doi: 10.4049/jimmunol.1400650. Epub 2014 Sep 15.


STAT1 signaling is essential for protection against Cryptococcus neoformans infection in mice.

Leopold Wager CM, Hole CR, Wozniak KL, Olszewski MA, Wormley FL Jr.

J Immunol. 2014 Oct 15;193(8):4060-71. doi: 10.4049/jimmunol.1400318. Epub 2014 Sep 8.


Role of CC chemokine receptor 4 in natural killer cell activation during acute cigarette smoke exposure.

Stolberg VR, Martin B, Mancuso P, Olszewski MA, Freeman CM, Curtis JL, Chensue SW.

Am J Pathol. 2014 Feb;184(2):454-63. doi: 10.1016/j.ajpath.2013.10.017. Epub 2013 Dec 9.


Interleukin-17A enhances host defense against cryptococcal lung infection through effects mediated by leukocyte recruitment, activation, and gamma interferon production.

Murdock BJ, Huffnagle GB, Olszewski MA, Osterholzer JJ.

Infect Immun. 2014 Mar;82(3):937-48. doi: 10.1128/IAI.01477-13. Epub 2013 Dec 9.


Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection.

Davis MJ, Tsang TM, Qiu Y, Dayrit JK, Freij JB, Huffnagle GB, Olszewski MA.

mBio. 2013 Jun 18;4(3):e00264-13. doi: 10.1128/mBio.00264-13.


Scavenger receptor A modulates the immune response to pulmonary Cryptococcus neoformans infection.

Qiu Y, Dayrit JK, Davis MJ, Carolan JF, Osterholzer JJ, Curtis JL, Olszewski MA.

J Immunol. 2013 Jul 1;191(1):238-48. doi: 10.4049/jimmunol.1203435. Epub 2013 Jun 3.


Implicating exudate macrophages and Ly-6C(high) monocytes in CCR2-dependent lung fibrosis following gene-targeted alveolar injury.

Osterholzer JJ, Olszewski MA, Murdock BJ, Chen GH, Erb-Downward JR, Subbotina N, Browning K, Lin Y, Morey RE, Dayrit JK, Horowitz JC, Simon RH, Sisson TH.

J Immunol. 2013 Apr 1;190(7):3447-57. doi: 10.4049/jimmunol.1200604. Epub 2013 Mar 6.


Cryptococcus neoformans growth and protection from innate immunity are dependent on expression of a virulence-associated DEAD-box protein, Vad1.

Qiu J, Olszewski MA, Williamson PR.

Infect Immun. 2013 Mar;81(3):777-88. doi: 10.1128/IAI.00821-12. Epub 2012 Dec 21.


Immune modulation mediated by cryptococcal laccase promotes pulmonary growth and brain dissemination of virulent Cryptococcus neoformans in mice.

Qiu Y, Davis MJ, Dayrit JK, Hadd Z, Meister DL, Osterholzer JJ, Williamson PR, Olszewski MA.

PLoS One. 2012;7(10):e47853. doi: 10.1371/journal.pone.0047853. Epub 2012 Oct 22.


Virulence factors identified by Cryptococcus neoformans mutant screen differentially modulate lung immune responses and brain dissemination.

He X, Lyons DM, Toffaletti DL, Wang F, Qiu Y, Davis MJ, Meister DL, Dayrit JK, Lee A, Osterholzer JJ, Perfect JR, Olszewski MA.

Am J Pathol. 2012 Oct;181(4):1356-66. doi: 10.1016/j.ajpath.2012.06.012. Epub 2012 Jul 28.


Early induction of CCL7 downstream of TLR9 signaling promotes the development of robust immunity to cryptococcal infection.

Qiu Y, Zeltzer S, Zhang Y, Wang F, Chen GH, Dayrit J, Murdock BJ, Bhan U, Toews GB, Osterholzer JJ, Standiford TJ, Olszewski MA.

J Immunol. 2012 Apr 15;188(8):3940-8. doi: 10.4049/jimmunol.1103053. Epub 2012 Mar 14.


PAI-1 promotes the accumulation of exudate macrophages and worsens pulmonary fibrosis following type II alveolar epithelial cell injury.

Osterholzer JJ, Christensen PJ, Lama V, Horowitz JC, Hattori N, Subbotina N, Cunningham A, Lin Y, Murdock BJ, Morey RE, Olszewski MA, Lawrence DA, Simon RH, Sisson TH.

J Pathol. 2012 Oct;228(2):170-80. doi: 10.1002/path.3992. Epub 2012 Jun 6.


Effect of cytokine interplay on macrophage polarization during chronic pulmonary infection with Cryptococcus neoformans.

Arora S, Olszewski MA, Tsang TM, McDonald RA, Toews GB, Huffnagle GB.

Infect Immun. 2011 May;79(5):1915-26. doi: 10.1128/IAI.01270-10. Epub 2011 Mar 7.


Chemokine receptor 2-mediated accumulation of fungicidal exudate macrophages in mice that clear cryptococcal lung infection.

Osterholzer JJ, Chen GH, Olszewski MA, Zhang YM, Curtis JL, Huffnagle GB, Toews GB.

Am J Pathol. 2011 Jan;178(1):198-211. doi: 10.1016/j.ajpath.2010.11.006. Epub 2010 Dec 23.


Dual roles of CD40 on microbial containment and the development of immunopathology in response to persistent fungal infection in the lung.

Chen GH, Osterholzer JJ, Choe MY, McDonald RA, Olszewski MA, Huffnagle GB, Toews GB.

Am J Pathol. 2010 Nov;177(5):2459-71. doi: 10.2353/ajpath.2010.100141. Epub 2010 Sep 23.


Mechanisms of cryptococcal virulence and persistence.

Olszewski MA, Zhang Y, Huffnagle GB.

Future Microbiol. 2010 Aug;5(8):1269-88. doi: 10.2217/fmb.10.93. Review.


TLR9 signaling is required for generation of the adaptive immune protection in Cryptococcus neoformans-infected lungs.

Zhang Y, Wang F, Bhan U, Huffnagle GB, Toews GB, Standiford TJ, Olszewski MA.

Am J Pathol. 2010 Aug;177(2):754-65. doi: 10.2353/ajpath.2010.091104. Epub 2010 Jun 25.


Pulmonary infection with an interferon-gamma-producing Cryptococcus neoformans strain results in classical macrophage activation and protection.

Hardison SE, Ravi S, Wozniak KL, Young ML, Olszewski MA, Wormley FL Jr.

Am J Pathol. 2010 Feb;176(2):774-85. doi: 10.2353/ajpath.2010.090634. Epub 2010 Jan 7.


CD11c+ cells are required to prevent progression from local acute lung injury to multiple organ failure and death.

Milam JE, Erb-Downward JR, Chen GH, Osuchowski MF, McDonald R, Chensue SW, Toews GB, Huffnagle GB, Olszewski MA.

Am J Pathol. 2010 Jan;176(1):218-26. doi: 10.2353/ajpath.2010.081027. Epub 2009 Nov 30.


Accumulation of CD11b+ lung dendritic cells in response to fungal infection results from the CCR2-mediated recruitment and differentiation of Ly-6Chigh monocytes.

Osterholzer JJ, Chen GH, Olszewski MA, Curtis JL, Huffnagle GB, Toews GB.

J Immunol. 2009 Dec 15;183(12):8044-53. doi: 10.4049/jimmunol.0902823.


Robust Th1 and Th17 immunity supports pulmonary clearance but cannot prevent systemic dissemination of highly virulent Cryptococcus neoformans H99.

Zhang Y, Wang F, Tompkins KC, McNamara A, Jain AV, Moore BB, Toews GB, Huffnagle GB, Olszewski MA.

Am J Pathol. 2009 Dec;175(6):2489-500. doi: 10.2353/ajpath.2009.090530. Epub 2009 Nov 5.

Supplemental Content

Loading ...
Support Center