Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 90

1.

Isolation and Purification of Colicin ECL 12, a Bacteriocin That Inhibits Strains of Escherichia coli O157:H7 .

Lyon WJ, Olson DG.

J Food Prot. 1997 Dec;60(12):1520-1528. doi: 10.4315/0362-028X-60.12.1520.

PMID:
31207744
2.
3.

Correction for Lo et al., "The Bifunctional Alcohol and Aldehyde Dehydrogenase Gene, adhE, Is Necessary for Ethanol Production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum".

Lo J, Zheng T, Hon S, Olson DG, Lynd LR.

J Bacteriol. 2018 Dec 7;201(1). pii: e00405-18. doi: 10.1128/JB.00405-18. Print 2019 Jan 1. No abstract available.

4.

Enantioselective Synthesis of Isocarbostyril Alkaloids and Analogs Using Catalytic Dearomative Functionalization of Benzene.

Bingham TW, Hernandez LW, Olson DG, Svec RL, Hergenrother PJ, Sarlah D.

J Am Chem Soc. 2019 Jan 9;141(1):657-670. doi: 10.1021/jacs.8b12123. Epub 2018 Dec 20.

PMID:
30520639
5.
6.

Expressing the Thermoanaerobacterium saccharolyticum pforA in engineered Clostridium thermocellum improves ethanol production.

Hon S, Holwerda EK, Worthen RS, Maloney MI, Tian L, Cui J, Lin PP, Lynd LR, Olson DG.

Biotechnol Biofuels. 2018 Sep 6;11:242. doi: 10.1186/s13068-018-1245-2. eCollection 2018.

7.

The redox-sensing protein Rex modulates ethanol production in Thermoanaerobacterium saccharolyticum.

Zheng T, Lanahan AA, Lynd LR, Olson DG.

PLoS One. 2018 Apr 5;13(4):e0195143. doi: 10.1371/journal.pone.0195143. eCollection 2018.

8.

Deletion of the hfsB gene increases ethanol production in Thermoanaerobacterium saccharolyticum and several other thermophilic anaerobic bacteria.

Eminoğlu A, Murphy SJ, Maloney M, Lanahan A, Giannone RJ, Hettich RL, Tripathi SA, Beldüz AO, Lynd LR, Olson DG.

Biotechnol Biofuels. 2017 Nov 30;10:282. doi: 10.1186/s13068-017-0968-9. eCollection 2017.

9.

Metabolome analysis reveals a role for glyceraldehyde 3-phosphate dehydrogenase in the inhibition of C. thermocellum by ethanol.

Tian L, Perot SJ, Stevenson D, Jacobson T, Lanahan AA, Amador-Noguez D, Olson DG, Lynd LR.

Biotechnol Biofuels. 2017 Nov 30;10:276. doi: 10.1186/s13068-017-0961-3. eCollection 2017.

10.

Expression of adhA from different organisms in Clostridium thermocellum.

Zheng T, Cui J, Bae HR, Lynd LR, Olson DG.

Biotechnol Biofuels. 2017 Nov 30;10:251. doi: 10.1186/s13068-017-0940-8. eCollection 2017.

11.

Enhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase.

Tian L, Perot SJ, Hon S, Zhou J, Liang X, Bouvier JT, Guss AM, Olson DG, Lynd LR.

Microb Cell Fact. 2017 Oct 4;16(1):171. doi: 10.1186/s12934-017-0783-9.

12.

The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum.

Hon S, Olson DG, Holwerda EK, Lanahan AA, Murphy SJL, Maloney MI, Zheng T, Papanek B, Guss AM, Lynd LR.

Metab Eng. 2017 Jul;42:175-184. doi: 10.1016/j.ymben.2017.06.011. Epub 2017 Jun 27.

PMID:
28663138
13.

Development of a core Clostridium thermocellum kinetic metabolic model consistent with multiple genetic perturbations.

Dash S, Khodayari A, Zhou J, Holwerda EK, Olson DG, Lynd LR, Maranas CD.

Biotechnol Biofuels. 2017 May 2;10:108. doi: 10.1186/s13068-017-0792-2. eCollection 2017.

14.

Determining the roles of the three alcohol dehydrogenases (AdhA, AdhB and AdhE) in Thermoanaerobacter ethanolicus during ethanol formation.

Zhou J, Shao X, Olson DG, Murphy SJ, Tian L, Lynd LR.

J Ind Microbiol Biotechnol. 2017 May;44(4-5):745-757. doi: 10.1007/s10295-016-1896-6. Epub 2017 Jan 11.

PMID:
28078513
15.

Engineering electron metabolism to increase ethanol production in Clostridium thermocellum.

Lo J, Olson DG, Murphy SJ, Tian L, Hon S, Lanahan A, Guss AM, Lynd LR.

Metab Eng. 2017 Jan;39:71-79. doi: 10.1016/j.ymben.2016.10.018. Epub 2016 Oct 28.

PMID:
27989806
16.

Glycolysis without pyruvate kinase in Clostridium thermocellum.

Olson DG, Hörl M, Fuhrer T, Cui J, Zhou J, Maloney MI, Amador-Noguez D, Tian L, Sauer U, Lynd LR.

Metab Eng. 2017 Jan;39:169-180. doi: 10.1016/j.ymben.2016.11.011. Epub 2016 Dec 1.

PMID:
27914869
17.

Both adhE and a Separate NADPH-Dependent Alcohol Dehydrogenase Gene, adhA, Are Necessary for High Ethanol Production in Thermoanaerobacterium saccharolyticum.

Zheng T, Olson DG, Murphy SJ, Shao X, Tian L, Lynd LR.

J Bacteriol. 2017 Jan 12;199(3). pii: e00542-16. doi: 10.1128/JB.00542-16. Print 2017 Feb 1.

18.

Ferredoxin:NAD+ Oxidoreductase of Thermoanaerobacterium saccharolyticum and Its Role in Ethanol Formation.

Tian L, Lo J, Shao X, Zheng T, Olson DG, Lynd LR.

Appl Environ Microbiol. 2016 Nov 21;82(24):7134-7141. Print 2016 Dec 15.

19.

Strain and bioprocess improvement of a thermophilic anaerobe for the production of ethanol from wood.

Herring CD, Kenealy WR, Joe Shaw A, Covalla SF, Olson DG, Zhang J, Ryan Sillers W, Tsakraklides V, Bardsley JS, Rogers SR, Thorne PG, Johnson JP, Foster A, Shikhare ID, Klingeman DM, Brown SD, Davison BH, Lynd LR, Hogsett DA.

Biotechnol Biofuels. 2016 Jun 16;9:125. doi: 10.1186/s13068-016-0536-8. eCollection 2016.

20.

Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum.

Tian L, Papanek B, Olson DG, Rydzak T, Holwerda EK, Zheng T, Zhou J, Maloney M, Jiang N, Giannone RJ, Hettich RL, Guss AM, Lynd LR.

Biotechnol Biofuels. 2016 Jun 2;9:116. doi: 10.1186/s13068-016-0528-8. eCollection 2016.

21.

Nicotinamide cofactor ratios in engineered strains of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.

Beri D, Olson DG, Holwerda EK, Lynd LR.

FEMS Microbiol Lett. 2016 Jun;363(11). pii: fnw091. doi: 10.1093/femsle/fnw091. Epub 2016 Apr 11.

PMID:
27190292
22.

A markerless gene deletion and integration system for Thermoanaerobacter ethanolicus.

Shao X, Zhou J, Olson DG, Lynd LR.

Biotechnol Biofuels. 2016 May 4;9:100. doi: 10.1186/s13068-016-0514-1. eCollection 2016.

23.

Development of a plasmid-based expression system in Clostridium thermocellum and its use to screen heterologous expression of bifunctional alcohol dehydrogenases (adhEs).

Hon S, Lanahan AA, Tian L, Giannone RJ, Hettich RL, Olson DG, Lynd LR.

Metab Eng Commun. 2016 Apr 22;3:120-129. doi: 10.1016/j.meteno.2016.04.001. eCollection 2016 Dec.

24.

Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities.

Xu Q, Resch MG, Podkaminer K, Yang S, Baker JO, Donohoe BS, Wilson C, Klingeman DM, Olson DG, Decker SR, Giannone RJ, Hettich RL, Brown SD, Lynd LR, Bayer EA, Himmel ME, Bomble YJ.

Sci Adv. 2016 Feb 5;2(2):e1501254. doi: 10.1126/sciadv.1501254. eCollection 2016 Feb.

25.

Promiscuous plasmid replication in thermophiles: Use of a novel hyperthermophilic replicon for genetic manipulation of Clostridium thermocellum at its optimum growth temperature.

Groom J, Chung D, Olson DG, Lynd LR, Guss AM, Westpheling J.

Metab Eng Commun. 2016 Jan 29;3:30-38. doi: 10.1016/j.meteno.2016.01.004. eCollection 2016 Dec.

26.

Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum.

Thompson RA, Layton DS, Guss AM, Olson DG, Lynd LR, Trinh CT.

Metab Eng. 2015 Nov;32:207-219. doi: 10.1016/j.ymben.2015.10.004. Epub 2015 Oct 21.

PMID:
26497628
27.

Correction for Lo et al., Deletion of nfnAB in Thermoanaerobacterium saccharolyticum and Its Effect on Metabolism.

Lo J, Zheng T, Olson DG, Ruppertsberger N, Tripathi SA, Tian L, Guss AM, Lynd LR.

J Bacteriol. 2015 Oct;197(20):3367. doi: 10.1128/JB.00688-15. No abstract available.

28.

Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485.

Zhou J, Olson DG, Lanahan AA, Tian L, Murphy SJ, Lo J, Lynd LR.

Biotechnol Biofuels. 2015 Sep 15;8:138. doi: 10.1186/s13068-015-0304-1. eCollection 2015.

29.

Three cellulosomal xylanase genes in Clostridium thermocellum are regulated by both vegetative SigA (σ(A)) and alternative SigI6 (σ(I6)) factors.

Sand A, Holwerda EK, Ruppertsberger NM, Maloney M, Olson DG, Nataf Y, Borovok I, Sonenshein AL, Bayer EA, Lamed R, Lynd LR, Shoham Y.

FEBS Lett. 2015 Oct 7;589(20 Pt B):3133-40. doi: 10.1016/j.febslet.2015.08.026. Epub 2015 Aug 29.

30.

Deletion of nfnAB in Thermoanaerobacterium saccharolyticum and Its Effect on Metabolism.

Lo J, Zheng T, Olson DG, Ruppertsberger N, Tripathi SA, Tian L, Guss AM, Lynd LR.

J Bacteriol. 2015 Sep;197(18):2920-9. doi: 10.1128/JB.00347-15. Epub 2015 Jun 29. Erratum in: J Bacteriol. 2015 Oct;197(20):3367. Tian, Liang [added].

31.

Cofactor Specificity of the Bifunctional Alcohol and Aldehyde Dehydrogenase (AdhE) in Wild-Type and Mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.

Zheng T, Olson DG, Tian L, Bomble YJ, Himmel ME, Lo J, Hon S, Shaw AJ, van Dijken JP, Lynd LR.

J Bacteriol. 2015 Aug 1;197(15):2610-9. doi: 10.1128/JB.00232-15. Epub 2015 May 26.

32.

Development of a regulatable plasmid-based gene expression system for Clostridium thermocellum.

Mearls EB, Olson DG, Herring CD, Lynd LR.

Appl Microbiol Biotechnol. 2015 Sep;99(18):7589-99. doi: 10.1007/s00253-015-6610-5. Epub 2015 May 21.

PMID:
25994254
33.

Coculture of Staphylococcus aureus with Pseudomonas aeruginosa Drives S. aureus towards Fermentative Metabolism and Reduced Viability in a Cystic Fibrosis Model.

Filkins LM, Graber JA, Olson DG, Dolben EL, Lynd LR, Bhuju S, O'Toole GA.

J Bacteriol. 2015 Jul;197(14):2252-64. doi: 10.1128/JB.00059-15. Epub 2015 Apr 27.

34.

Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum.

Biswas R, Zheng T, Olson DG, Lynd LR, Guss AM.

Biotechnol Biofuels. 2015 Feb 12;8:20. doi: 10.1186/s13068-015-0204-4. eCollection 2015.

35.

Ethanol production by engineered thermophiles.

Olson DG, Sparling R, Lynd LR.

Curr Opin Biotechnol. 2015 Jun;33:130-41. doi: 10.1016/j.copbio.2015.02.006. Epub 2015 Mar 5. Review.

PMID:
25745810
36.
37.

The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading.

Holwerda EK, Thorne PG, Olson DG, Amador-Noguez D, Engle NL, Tschaplinski TJ, van Dijken JP, Lynd LR.

Biotechnol Biofuels. 2014 Oct 21;7(1):155. doi: 10.1186/s13068-014-0155-1. eCollection 2014.

38.

Survival of methicillin-resistant Staphylococcus aureus during thermal processing of frankfurters, summer sausage, and ham.

Campbell JA, Dickson JS, Cordray JC, Olson DG, Mendonca AF, Prusa KJ.

Foodborne Pathog Dis. 2014 Jan;11(1):50-4. doi: 10.1089/fpd.2013.1571. Epub 2013 Dec 9.

PMID:
24320798
39.

Functional heterologous expression of an engineered full length CipA from Clostridium thermocellum in Thermoanaerobacterium saccharolyticum.

Currie DH, Herring CD, Guss AM, Olson DG, Hogsett DA, Lynd LR.

Biotechnol Biofuels. 2013 Mar 1;6(1):32. doi: 10.1186/1754-6834-6-32.

40.

Atypical glycolysis in Clostridium thermocellum.

Zhou J, Olson DG, Argyros DA, Deng Y, van Gulik WM, van Dijken JP, Lynd LR.

Appl Environ Microbiol. 2013 May;79(9):3000-8. doi: 10.1128/AEM.04037-12. Epub 2013 Feb 22.

41.

Role of the CipA scaffoldin protein in cellulose solubilization, as determined by targeted gene deletion and complementation in Clostridium thermocellum.

Olson DG, Giannone RJ, Hettich RL, Lynd LR.

J Bacteriol. 2013 Feb;195(4):733-9. doi: 10.1128/JB.02014-12. Epub 2012 Nov 30.

42.

Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum.

Deng Y, Olson DG, Zhou J, Herring CD, Joe Shaw A, Lynd LR.

Metab Eng. 2013 Jan;15:151-8. doi: 10.1016/j.ymben.2012.11.006. Epub 2012 Nov 29. Erratum in: Metab Eng. 2014 Mar;22:1-2.

PMID:
23202749
43.

Exchange of type II dockerin-containing subunits of the Clostridium thermocellum cellulosome as revealed by SNAP-tags.

Waller BH, Olson DG, Currie DH, Guss AM, Lynd LR.

FEMS Microbiol Lett. 2013 Jan;338(1):46-53. doi: 10.1111/1574-6968.12029. Epub 2012 Nov 30.

44.

Transformation of Clostridium thermocellum by electroporation.

Olson DG, Lynd LR.

Methods Enzymol. 2012;510:317-30. doi: 10.1016/B978-0-12-415931-0.00017-3.

PMID:
22608734
45.
46.

Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum.

Guss AM, Olson DG, Caiazza NC, Lynd LR.

Biotechnol Biofuels. 2012 May 6;5(1):30. doi: 10.1186/1754-6834-5-30.

47.

Recent progress in consolidated bioprocessing.

Olson DG, McBride JE, Shaw AJ, Lynd LR.

Curr Opin Biotechnol. 2012 Jun;23(3):396-405. doi: 10.1016/j.copbio.2011.11.026. Epub 2011 Dec 14. Review.

PMID:
22176748
48.

High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes.

Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC.

Appl Environ Microbiol. 2011 Dec;77(23):8288-94. doi: 10.1128/AEM.00646-11. Epub 2011 Sep 30.

49.

Inactivation of feline calicivirus as a surrogate for norovirus on lettuce by electron beam irradiation.

Zhou F, Harmon KM, Yoon KJ, Olson DG, Dickson JS.

J Food Prot. 2011 Sep;74(9):1500-3. doi: 10.4315/0362-028X.JFP-11-121.

PMID:
21902919
50.

Deletion of the Cel48S cellulase from Clostridium thermocellum.

Olson DG, Tripathi SA, Giannone RJ, Lo J, Caiazza NC, Hogsett DA, Hettich RL, Guss AM, Dubrovsky G, Lynd LR.

Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17727-32. doi: 10.1073/pnas.1003584107. Epub 2010 Sep 13.

Supplemental Content

Loading ...
Support Center