Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 16

1.

Multipart DNA Assembly Using Site-Specific Recombinases from the Large Serine Integrase Family.

Olorunniji FJ, Merrick C, Rosser SJ, Smith MCM, Stark WM, Colloms SD.

Methods Mol Biol. 2017;1642:303-323. doi: 10.1007/978-1-4939-7169-5_19.

PMID:
28815508
2.

Purification and In Vitro Characterization of Zinc Finger Recombinases.

Olorunniji FJ, Rosser SJ, Marshall Stark W.

Methods Mol Biol. 2017;1642:229-245. doi: 10.1007/978-1-4939-7169-5_15.

PMID:
28815504
3.

Control of serine integrase recombination directionality by fusion with the directionality factor.

Olorunniji FJ, McPherson AL, Rosser SJ, Smith MCM, Colloms SD, Stark WM.

Nucleic Acids Res. 2017 Aug 21;45(14):8635-8645. doi: 10.1093/nar/gkx567.

4.

Site-specific recombinases: molecular machines for the Genetic Revolution.

Olorunniji FJ, Rosser SJ, Stark WM.

Biochem J. 2016 Mar 15;473(6):673-84. doi: 10.1042/BJ20151112. Review.

PMID:
26965385
5.

Medicinal Plants Used in the Management of Diabetes Mellitus 2015.

Yakubu MT, Sunmonu TO, Lewu FB, Ashafa AO, Olorunniji FJ, Eddouks M.

Evid Based Complement Alternat Med. 2015;2015:467196. doi: 10.1155/2015/467196. Epub 2015 Oct 7. No abstract available.

6.

Nicked-site substrates for a serine recombinase reveal enzyme-DNA communications and an essential tethering role of covalent enzyme-DNA linkages.

Olorunniji FJ, McPherson AL, Pavlou HJ, McIlwraith MJ, Brazier JA, Cosstick R, Stark WM.

Nucleic Acids Res. 2015 Jul 13;43(12):6134-43. doi: 10.1093/nar/gkv521. Epub 2015 May 18.

7.

Efficacy and safety of medicinal plants used in the management of diabetes mellitus.

Yakubu MT, Sunmonu TO, Lewu FB, Ashafa AO, Olorunniji FJ, Eddouks M.

Evid Based Complement Alternat Med. 2014;2014:793035. doi: 10.1155/2014/793035. Epub 2014 Apr 3. No abstract available.

8.

Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination.

Colloms SD, Merrick CA, Olorunniji FJ, Stark WM, Smith MC, Osbourn A, Keasling JD, Rosser SJ.

Nucleic Acids Res. 2014 Feb;42(4):e23. doi: 10.1093/nar/gkt1101. Epub 2013 Nov 12.

9.

Gated rotation mechanism of site-specific recombination by ϕC31 integrase.

Olorunniji FJ, Buck DE, Colloms SD, McEwan AR, Smith MC, Stark WM, Rosser SJ.

Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19661-6. doi: 10.1073/pnas.1210964109. Epub 2012 Nov 12.

10.

Distinct metal ion requirements for the phosphomonoesterase and phosphodiesterase activities of calf intestinal alkaline phosphatase.

Igunnu A, Osalaye DS, Olorunsogo OO, Malomo SO, Olorunniji FJ.

Open Biochem J. 2011;5:67-72. doi: 10.2174/1874091X01105010067. Epub 2011 Dec 30.

11.

Zinc-finger recombinase activities in vitro.

Prorocic MM, Wenlong D, Olorunniji FJ, Akopian A, Schloetel JG, Hannigan A, McPherson AL, Stark WM.

Nucleic Acids Res. 2011 Nov;39(21):9316-28. doi: 10.1093/nar/gkr652. Epub 2011 Aug 17.

12.

Intermediates in serine recombinase-mediated site-specific recombination.

Marshall Stark W, Boocock MR, Olorunniji FJ, Rowland SJ.

Biochem Soc Trans. 2011 Apr;39(2):617-22. doi: 10.1042/BST0390617. Review.

PMID:
21428950
13.

Catalysis of site-specific recombination by Tn3 resolvase.

Olorunniji FJ, Stark WM.

Biochem Soc Trans. 2010 Apr;38(2):417-21. doi: 10.1042/BST0380417. Review.

PMID:
20298194
14.

The catalytic residues of Tn3 resolvase.

Olorunniji FJ, Stark WM.

Nucleic Acids Res. 2009 Dec;37(22):7590-602. doi: 10.1093/nar/gkp797.

15.

Synapsis and catalysis by activated Tn3 resolvase mutants.

Olorunniji FJ, He J, Wenwieser SV, Boocock MR, Stark WM.

Nucleic Acids Res. 2008 Dec;36(22):7181-91. doi: 10.1093/nar/gkn885. Epub 2008 Nov 10.

16.

Promethazine oxidation by redox mediation in peroxidase reactions.

Olorunniji FJ, Malomo SO, Adediran SA, Odutuga AA.

Arch Biochem Biophys. 2000 Aug 15;380(2):251-6.

PMID:
10933879

Supplemental Content

Loading ...
Support Center