Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 52

1.

Carotenoid production and phenotypic variation in Azospirillum brasilense.

Brenholtz GR, Tamir-Ariel D, Okon Y, Burdman S.

Res Microbiol. 2017 Jun;168(5):493-501. doi: 10.1016/j.resmic.2017.02.008. Epub 2017 Mar 2.

PMID:
28263905
2.

Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense.

Fibach-Paldi S, Burdman S, Okon Y.

FEMS Microbiol Lett. 2012 Jan;326(2):99-108. doi: 10.1111/j.1574-6968.2011.02407.x. Epub 2011 Oct 3. Review.

3.

Phenotypic variation in Azospirillum brasilense exposed to starvation.

Lerner A, Valverde A, Castro-Sowinski S, Lerner H, Okon Y, Burdman S.

Environ Microbiol Rep. 2010 Aug;2(4):577-86. doi: 10.1111/j.1758-2229.2010.00149.x. Epub 2010 Mar 3.

PMID:
23766228
4.

Effects of Azospirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere.

Baudoin E, Lerner A, Mirza MS, El Zemrany H, Prigent-Combaret C, Jurkevich E, Spaepen S, Vanderleyden J, Nazaret S, Okon Y, Moënne-Loccoz Y.

Res Microbiol. 2010 Apr;161(3):219-26. doi: 10.1016/j.resmic.2010.01.005. Epub 2010 Feb 4.

PMID:
20138146
5.

Glycogen phosphorylase is involved in stress endurance and biofilm formation in Azospirillum brasilense Sp7.

Lerner A, Castro-Sowinski S, Lerner H, Okon Y, Burdman S.

FEMS Microbiol Lett. 2009 Nov;300(1):75-82. doi: 10.1111/j.1574-6968.2009.01773.x. Epub 2009 Aug 28.

6.

The Azospirillum brasilense Sp7 noeJ and noeL genes are involved in extracellular polysaccharide biosynthesis.

Lerner A, Castro-Sowinski S, Valverde A, Lerner H, Dror R, Okon Y, Burdman S.

Microbiology. 2009 Dec;155(Pt 12):4058-4068. doi: 10.1099/mic.0.031807-0. Epub 2009 Sep 17.

PMID:
19762447
7.

The wzm gene located on the pRhico plasmid of Azospirillum brasilense Sp7 is involved in lipopolysaccharide synthesis.

Lerner A, Okon Y, Burdman S.

Microbiology. 2009 Mar;155(Pt 3):791-804. doi: 10.1099/mic.0.021824-0.

PMID:
19246750
8.

A thioredoxin of Sinorhizobium meliloti CE52G is required for melanin production and symbiotic nitrogen fixation.

Castro-Sowinski S, Matan O, Bonafede P, Okon Y.

Mol Plant Microbe Interact. 2007 Aug;20(8):986-93.

9.

Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms.

Castro-Sowinski S, Herschkovitz Y, Okon Y, Jurkevitch E.

FEMS Microbiol Lett. 2007 Nov;276(1):1-11. Epub 2007 Aug 15. Review.

10.

cDNA-AFLP reveals differentially expressed genes related to cell aggregation of Azospirillum brasilense.

Valverde A, Okon Y, Burdman S.

FEMS Microbiol Lett. 2006 Dec;265(2):186-94.

11.

Effect of ammonia production by Colletotrichum gloeosporioides on pelB activation, pectate lyase secretion, and fruit pathogenicity.

Kramer-Haimovich H, Servi E, Katan T, Rollins J, Okon Y, Prusky D.

Appl Environ Microbiol. 2006 Feb;72(2):1034-9.

12.

Azospirillum brasilense does not affect population structure of specific rhizobacterial communities of inoculated maize (Zea mays).

Herschkovitz Y, Lerner A, Davidov Y, Okon Y, Jurkevitch E.

Environ Microbiol. 2005 Nov;7(11):1847-52.

PMID:
16232299
13.

Inoculation with the plant-growth-promoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays).

Herschkovitz Y, Lerner A, Davidov Y, Rothballer M, Hartmann A, Okon Y, Jurkevitch E.

Microb Ecol. 2005 Aug;50(2):277-88. Epub 2005 Oct 13.

PMID:
16211327
14.

Ecological and agricultural significance of bacterial polyhydroxyalkanoates.

Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S.

Crit Rev Microbiol. 2005;31(2):55-67. Review.

PMID:
15986831
15.

Arabinose content of extracellular polysaccharide plays a role in cell aggregation of Azospirillum brasilense.

Bahat-Samet E, Castro-Sowinski S, Okon Y.

FEMS Microbiol Lett. 2004 Aug 15;237(2):195-203.

16.

Poly beta-hydroxybutyrate depolymerase (PhaZ) in Azospirillum brasilense and characterization of a phaZ mutant.

Kadouri D, Jurkevitch E, Okon Y.

Arch Microbiol. 2003 Nov;180(5):309-18. Epub 2003 Aug 1.

PMID:
12898135
17.

External pH and nitrogen source affect secretion of pectate lyase by Colletotrichum gloeosporioides.

Drori N, Kramer-Haimovich H, Rollins J, Dinoor A, Okon Y, Pines O, Prusky D.

Appl Environ Microbiol. 2003 Jun;69(6):3258-62.

18.
19.
20.

Laccase activity in melanin-producing strains of Sinorhizobium meliloti.

Castro-Sowinski S, Martinez-Drets G, Okon Y.

FEMS Microbiol Lett. 2002 Mar 19;209(1):119-25.

21.

Identification and characterization of a periplasmic nitrate reductase in Azospirillum brasilense Sp245.

Steenhoudt O, Keijers V, Okon Y, Vanderleyden J.

Arch Microbiol. 2001 May;175(5):344-52.

PMID:
11409544
22.
23.

The defense response elicited by the pathogen Rhizoctonia solani is suppressed by colonization of the AM-fungus Glomus intraradices.

Guenoune D, Galili S, Phillips DA, Volpin H, Chet I, Okon Y, Kapulnik Y.

Plant Sci. 2001 Apr;160(5):925-932.

PMID:
11297789
24.

Identification and characterization of the omaA gene encoding the major outer membrane protein of Azospirillum brasilense.

Burdman S, De Mot R, Vanderleyden J, Okon Y, Jurkevitch E.

DNA Seq. 2000;11(3-4):225-37.

PMID:
11092733
25.

Extracellular polysaccharide composition of Azospirillum brasilense and its relation with cell aggregation.

Burdman S, Jurkevitch E, Soria-Díaz ME, Serrano AM, Okon Y.

FEMS Microbiol Lett. 2000 Aug 15;189(2):259-64.

26.

Isolation and sequence analysis of repA from the incurable 90 MDA plasmid of Azospirillum brasilense.

Vande Broek A, Okon Y, Vanderleyden J.

DNA Seq. 2000;11(1-2):101-7.

PMID:
10902916
27.

Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots.

Burdman S, Okon Y, Jurkevitch E.

Crit Rev Microbiol. 2000;26(2):91-110. Review.

PMID:
10890352
28.

Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions.

Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J.

Trends Microbiol. 2000 Jul;8(7):298-300. No abstract available.

PMID:
10878760
29.

Involvement of outer-membrane proteins in the aggregation of Azospirillum brasilense.

Burdman S, Jurkevitch E, Schwartsburd B, Okon Y.

Microbiology. 1999 May;145 ( Pt 5):1145-1152. doi: 10.1099/13500872-145-5-1145.

PMID:
10376830
30.

Aggregation in Azospirillum brasilense: effects of chemical and physical factors and involvement of extracellular components.

Burdman S, Jurkevitch E, Schwartsburd B, Hampel M, Okon Y.

Microbiology. 1998 Jul;144 ( Pt 7):1989-99.

PMID:
9695932
31.

The response of maize (Zea mays) to Azospirillum inoculation in various types of soils in the field.

Fallik E, Okon Y.

World J Microbiol Biotechnol. 1996 Sep;12(5):511-5. doi: 10.1007/BF00419465.

PMID:
24415382
32.

Promotion of nod Gene Inducers and Nodulation in Common Bean (Phaseolus vulgaris) Roots Inoculated with Azospirillum brasilense Cd.

Burdman S, Volpin H, Kigel J, Kapulnik Y, Okon Y.

Appl Environ Microbiol. 1996 Aug;62(8):3030-3.

33.

Suppression of an Isoflavonoid Phytoalexin Defense Response in Mycorrhizal Alfalfa Roots.

Volpin H, Phillips DA, Okon Y, Kapulnik Y.

Plant Physiol. 1995 Aug;108(4):1449-1454.

34.

The development of Azospirillum as a commercial inoculant for improving crop yields.

Okon Y, Itzigsohn R.

Biotechnol Adv. 1995;13(3):415-24.

PMID:
14536095
35.

A Vesicular Arbuscular Mycorrhizal Fungus (Glomus intraradix) Induces a Defense Response in Alfalfa Roots.

Volpin H, Elkind Y, Okon Y, Kapulnik Y.

Plant Physiol. 1994 Feb;104(2):683-689.

36.

N(2) Fixation by Azospirillum brasilense and Its Incorporation into Host Setaria italica.

Okon Y, Heytler PG, Hardy RW.

Appl Environ Microbiol. 1983 Sep;46(3):694-7.

37.
38.

Aerotactic response of Azospirillum brasilense.

Barak R, Nur I, Okon Y, Henis Y.

J Bacteriol. 1982 Nov;152(2):643-9.

40.
41.

Aerotaxis and chemotaxis ofAzospirillum brasilense: A note.

Okon Y, Cakmakci L, Nur I, Chet I.

Microb Ecol. 1980 Sep;6(3):277-80. doi: 10.1007/BF02010393.

PMID:
24227135
42.
43.

An increase in nitrogen content of Setaria italica and Zea mays inoculated with Azospirillum.

Nur I, Okon Y, Henis Y.

Can J Microbiol. 1980 Apr;26(4):482-5.

PMID:
6769575
44.

The nitrogenase system of Spirillum lipoferum.

Ludden PW, Okon Y, Burris RH.

Biochem J. 1978 Sep 1;173(3):1001-3.

45.

Effects of Light and Temperature on the Association between Zea mays and Spirillum lipoferum.

Albrecht SL, Okon Y, Burris RH.

Plant Physiol. 1977 Oct;60(4):528-31.

46.
47.

Physiological studies of Spirillum lipoferum.

Burris RH, Okon Y, Albrecht SL.

Basic Life Sci. 1977;9:445-50. No abstract available.

PMID:
411476
48.
49.

Carbon and ammonia metabolism of Spirillum lipoferum.

Okon Y, Albrecht SL, Burris RH.

J Bacteriol. 1976 Nov;128(2):592-7.

50.

Factors affecting growth and nitrogen fixation of Spirillum lipoferum.

Okon Y, Albrecht SL, Burris RH.

J Bacteriol. 1976 Sep;127(3):1248-54.

Supplemental Content

Support Center