Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 73

1.

Effects of generalized pooling on binocular disparity selectivity of neurons in the early visual cortex.

Kato D, Baba M, Sasaki KS, Ohzawa I.

Philos Trans R Soc Lond B Biol Sci. 2016 Jun 19;371(1697). pii: 20150266. doi: 10.1098/rstb.2015.0266.

2.

Subspace mapping of the three-dimensional spectral receptive field of macaque MT neurons.

Inagaki M, Sasaki KS, Hashimoto H, Ohzawa I.

J Neurophysiol. 2016 Aug 1;116(2):784-95. doi: 10.1152/jn.00934.2015. Epub 2016 May 18.

3.

Supranormal orientation selectivity of visual neurons in orientation-restricted animals.

Sasaki KS, Kimura R, Ninomiya T, Tabuchi Y, Tanaka H, Fukui M, Asada YC, Arai T, Inagaki M, Nakazono T, Baba M, Kato D, Nishimoto S, Sanada TM, Tani T, Imamura K, Tanaka S, Ohzawa I.

Sci Rep. 2015 Nov 16;5:16712. doi: 10.1038/srep16712.

4.

Integration of Multiple Spatial Frequency Channels in Disparity-Sensitive Neurons in the Primary Visual Cortex.

Baba M, Sasaki KS, Ohzawa I.

J Neurosci. 2015 Jul 8;35(27):10025-38. doi: 10.1523/JNEUROSCI.0790-15.2015.

5.

Early monocular defocus disrupts the normal development of receptive-field structure in V2 neurons of macaque monkeys.

Tao X, Zhang B, Shen G, Wensveen J, Smith EL 3rd, Nishimoto S, Ohzawa I, Chino YM.

J Neurosci. 2014 Oct 8;34(41):13840-54. doi: 10.1523/JNEUROSCI.1992-14.2014.

6.

Spatial range and laminar structures of neuronal correlations in the cat primary visual cortex.

Tanaka H, Tamura H, Ohzawa I.

J Neurophysiol. 2014 Aug 1;112(3):705-18. doi: 10.1152/jn.00652.2013. Epub 2014 May 14.

7.

Activation of efferents from the basolateral amygdala during the retrieval of conditioned taste aversion.

Inui T, Inui-Yamamoto C, Yoshioka Y, Ohzawa I, Shimura T.

Neurobiol Learn Mem. 2013 Nov;106:210-20. doi: 10.1016/j.nlm.2013.09.003. Epub 2013 Sep 20.

PMID:
24055778
8.

Receptive-field subfields of V2 neurons in macaque monkeys are adult-like near birth.

Zhang B, Tao X, Shen G, Smith EL 3rd, Ohzawa I, Chino YM.

J Neurosci. 2013 Feb 6;33(6):2639-49. doi: 10.1523/JNEUROSCI.4377-12.2013.

9.

Contributions of excitation and suppression in shaping spatial frequency selectivity of V1 neurons as revealed by binocular measurements.

Ninomiya T, Sanada TM, Ohzawa I.

J Neurophysiol. 2012 Apr;107(8):2220-31. doi: 10.1152/jn.00832.2010. Epub 2012 Jan 11.

10.

Local sensitivity to stimulus orientation and spatial frequency within the receptive fields of neurons in visual area 2 of macaque monkeys.

Tao X, Zhang B, Smith EL 3rd, Nishimoto S, Ohzawa I, Chino YM.

J Neurophysiol. 2012 Feb;107(4):1094-110. doi: 10.1152/jn.00640.2011. Epub 2011 Nov 23.

11.

Activation of projective neurons from the nucleus accumbens to ventral pallidum by a learned aversive taste stimulus in rats: a manganese-enhanced magnetic resonance imaging study.

Inui T, Inui-Yamamoto C, Yoshioka Y, Ohzawa I, Shimura T.

Neuroscience. 2011 Mar 17;177:66-73. doi: 10.1016/j.neuroscience.2011.01.006. Epub 2011 Jan 8.

PMID:
21219975
12.

Complex cells in the cat striate cortex have multiple disparity detectors in the three-dimensional binocular receptive fields.

Sasaki KS, Tabuchi Y, Ohzawa I.

J Neurosci. 2010 Oct 13;30(41):13826-37. doi: 10.1523/JNEUROSCI.1135-10.2010.

13.

The brain mapping of the retrieval of conditioned taste aversion memory using manganese-enhanced magnetic resonance imaging in rats.

Inui-Yamamoto C, Yoshioka Y, Inui T, Sasaki KS, Ooi Y, Ueda K, Seiyama A, Ohzawa I.

Neuroscience. 2010 May 5;167(2):199-204. doi: 10.1016/j.neuroscience.2010.02.027. Epub 2010 Feb 16.

PMID:
20167260
14.

Surround suppression of V1 neurons mediates orientation-based representation of high-order visual features.

Tanaka H, Ohzawa I.

J Neurophysiol. 2009 Mar;101(3):1444-62. doi: 10.1152/jn.90749.2008. Epub 2008 Dec 24.

15.

Time course of cross-orientation suppression in the early visual cortex.

Kimura R, Ohzawa I.

J Neurophysiol. 2009 Mar;101(3):1463-79. doi: 10.1152/jn.90681.2008. Epub 2008 Dec 17.

16.

Internal spatial organization of receptive fields of complex cells in the early visual cortex.

Sasaki KS, Ohzawa I.

J Neurophysiol. 2007 Sep;98(3):1194-212. Epub 2007 Jul 25.

17.

Neural basis for stereopsis from second-order contrast cues.

Tanaka H, Ohzawa I.

J Neurosci. 2006 Apr 19;26(16):4370-82.

18.
19.

Encoding of three-dimensional surface slant in cat visual areas 17 and 18.

Sanada TM, Ohzawa I.

J Neurophysiol. 2006 May;95(5):2768-86. Epub 2006 Jan 4.

20.

Accuracy of subspace mapping of spatiotemporal frequency domain visual receptive fields.

Nishimoto S, Arai M, Ohzawa I.

J Neurophysiol. 2005 Jun;93(6):3524-36. Epub 2005 Jan 12.

21.

Disinhibition outside receptive fields in the visual cortex.

Walker GA, Ohzawa I, Freeman RD.

J Neurosci. 2002 Jul 1;22(13):5659-68.

22.

Beyond the classical receptive field in the visual cortex.

Freeman RD, Ohzawa I, Walker G.

Prog Brain Res. 2001;134:157-70.

PMID:
11702541
23.

Neural and perceptual adjustments to dim light.

Peterson M, Ohzawa I, Freeman R.

Vis Neurosci. 2001 Mar-Apr;18(2):203-8.

PMID:
11417795
24.

Joint-encoding of motion and depth by visual cortical neurons: neural basis of the Pulfrich effect.

Anzai A, Ohzawa I, Freeman RD.

Nat Neurosci. 2001 May;4(5):513-8.

PMID:
11319560
25.

Contrast gain control in the visual cortex: monocular versus binocular mechanisms.

Truchard AM, Ohzawa I, Freeman RD.

J Neurosci. 2000 Apr 15;20(8):3017-32.

26.

Suppression outside the classical cortical receptive field.

Walker GA, Ohzawa I, Freeman RD.

Vis Neurosci. 2000 May-Jun;17(3):369-79.

PMID:
10910105
27.

Linear and nonlinear contributions to orientation tuning of simple cells in the cat's striate cortex.

Gardner JL, Anzai A, Ohzawa I, Freeman RD.

Vis Neurosci. 1999 Nov-Dec;16(6):1115-21.

PMID:
10614591
28.

Asymmetric suppression outside the classical receptive field of the visual cortex.

Walker GA, Ohzawa I, Freeman RD.

J Neurosci. 1999 Dec 1;19(23):10536-53.

29.

Neural mechanisms for processing binocular information II. Complex cells.

Anzai A, Ohzawa I, Freeman RD.

J Neurophysiol. 1999 Aug;82(2):909-24.

30.

Neural mechanisms for processing binocular information I. Simple cells.

Anzai A, Ohzawa I, Freeman RD.

J Neurophysiol. 1999 Aug;82(2):891-908.

31.

Neural mechanisms for encoding binocular disparity: receptive field position versus phase.

Anzai A, Ohzawa I, Freeman RD.

J Neurophysiol. 1999 Aug;82(2):874-90.

32.

Do animals see what we see?

Ohzawa I.

Nat Neurosci. 1999 Jul;2(7):586-8. No abstract available.

PMID:
10404171
33.

Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons.

DeAngelis GC, Ghose GM, Ohzawa I, Freeman RD.

J Neurosci. 1999 May 15;19(10):4046-64.

34.

Mechanisms of stereoscopic vision: the disparity energy model.

Ohzawa I.

Curr Opin Neurobiol. 1998 Aug;8(4):509-15. Review.

PMID:
9751654
35.

Binocular cross-orientation suppression in the cat's striate cortex.

Walker GA, Ohzawa I, Freeman RD.

J Neurophysiol. 1998 Jan;79(1):227-39.

36.

Encoding of binocular disparity by complex cells in the cat's visual cortex.

Ohzawa I, DeAngelis GC, Freeman RD.

J Neurophysiol. 1997 Jun;77(6):2879-909.

37.

Neural mechanisms underlying binocular fusion and stereopsis: position vs. phase.

Anzai A, Ohzawa I, Freeman RD.

Proc Natl Acad Sci U S A. 1997 May 13;94(10):5438-43.

38.

The neural coding of stereoscopic depth.

Ohzawa I, DeAngelis GC, Freeman RD.

Neuroreport. 1997 Feb 10;8(3):iii-xii. Review.

PMID:
9106726
39.

Encoding of binocular disparity by simple cells in the cat's visual cortex.

Ohzawa I, DeAngelis GC, Freeman RD.

J Neurophysiol. 1996 May;75(5):1779-805.

PMID:
8734580
40.

A flexible PC-based physiological monitor for animal experiments.

Ghose GM, Ohzawa I, Freeman RD.

J Neurosci Methods. 1995 Nov;62(1-2):7-13.

PMID:
8750079
41.

Receptive field structure in the visual cortex: does selective stimulation induce plasticity?

DeAngelis GC, Anzai A, Ohzawa I, Freeman RD.

Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9682-6.

42.

Receptive-field dynamics in the central visual pathways.

DeAngelis GC, Ohzawa I, Freeman RD.

Trends Neurosci. 1995 Oct;18(10):451-8. Review.

PMID:
8545912
43.
44.

Local intracortical connections in the cat's visual cortex: postnatal development and plasticity.

Ghose GM, Freeman RD, Ohzawa I.

J Neurophysiol. 1994 Sep;72(3):1290-303.

PMID:
7807212
45.

Length and width tuning of neurons in the cat's primary visual cortex.

DeAngelis GC, Freeman RD, Ohzawa I.

J Neurophysiol. 1994 Jan;71(1):347-74.

PMID:
8158236
46.

Receptive-field maps of correlated discharge between pairs of neurons in the cat's visual cortex.

Ghose GM, Ohzawa I, Freeman RD.

J Neurophysiol. 1994 Jan;71(1):330-46.

PMID:
8158235
47.
48.
49.

Development of binocular vision in the kitten's striate cortex.

Freeman RD, Ohzawa I.

J Neurosci. 1992 Dec;12(12):4721-36.

50.

Direction selectivity of cells in the cat's striate cortex: differences between bar and grating stimuli.

Casanova C, Nordmann JP, Ohzawa I, Freeman RD.

Vis Neurosci. 1992 Nov;9(5):505-13.

PMID:
1450103

Supplemental Content

Loading ...
Support Center