Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 283

1.

Atg2 mediates direct lipid transfer between membranes for autophagosome formation.

Osawa T, Kotani T, Kawaoka T, Hirata E, Suzuki K, Nakatogawa H, Ohsumi Y, Noda NN.

Nat Struct Mol Biol. 2019 Apr;26(4):281-288. doi: 10.1038/s41594-019-0203-4. Epub 2019 Mar 25.

PMID:
30911189
2.

Two distinct mechanisms target the autophagy-related E3 complex to the pre-autophagosomal structure.

Harada K, Kotani T, Kirisako H, Sakoh-Nakatogawa M, Oikawa Y, Kimura Y, Hirano H, Yamamoto H, Ohsumi Y, Nakatogawa H.

Elife. 2019 Feb 27;8. pii: e43088. doi: 10.7554/eLife.43088.

3.

Analysis of autophagy activated during changes in carbon source availability in yeast cells.

Iwama R, Ohsumi Y.

J Biol Chem. 2019 Apr 5;294(14):5590-5603. doi: 10.1074/jbc.RA118.005698. Epub 2019 Feb 12.

PMID:
30755486
4.

Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with a vacuole membrane protein.

Liu XM, Yamasaki A, Du XM, Coffman VC, Ohsumi Y, Nakatogawa H, Wu JQ, Noda NN, Du LL.

Elife. 2018 Nov 19;7. pii: e41237. doi: 10.7554/eLife.41237.

5.

The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation.

Kotani T, Kirisako H, Koizumi M, Ohsumi Y, Nakatogawa H.

Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10363-10368. doi: 10.1073/pnas.1806727115. Epub 2018 Sep 25.

6.

Unveiling the Molecular Mechanisms of Plant Autophagy-From Autophagosomes to Vacuoles in Plants.

Yoshimoto K, Ohsumi Y.

Plant Cell Physiol. 2018 Jul 1;59(7):1337-1344. doi: 10.1093/pcp/pcy112. Review.

PMID:
29893925
7.

Corrigendum to "Atg7 Activates an Autophagy-Essential Ubiquitin-like Protein Atg8 through Multi-step Recognition" [J. Mol. Biol. 430 (3) (Feb 2, 2018) 249-257].

Yamaguchi M, Satoo K, Suzuki H, Fujioka Y, Ohsumi Y, Inagaki F, Noda NN.

J Mol Biol. 2018 Apr 27;430(9):1402. doi: 10.1016/j.jmb.2018.03.013. Epub 2018 Apr 7. No abstract available.

PMID:
29631906
8.

Atg7 Activates an Autophagy-Essential Ubiquitin-like Protein Atg8 through Multi-Step Recognition.

Yamaguchi M, Satoo K, Suzuki H, Fujioka Y, Ohsumi Y, Inagaki F, Noda NN.

J Mol Biol. 2018 Feb 2;430(3):249-257. doi: 10.1016/j.jmb.2017.12.002. Epub 2017 Dec 10. Erratum in: J Mol Biol. 2018 Apr 6;:.

PMID:
29237558
9.

Autophagy induction under carbon starvation conditions is negatively regulated by carbon catabolite repression.

Adachi A, Koizumi M, Ohsumi Y.

J Biol Chem. 2017 Dec 1;292(48):19905-19918. doi: 10.1074/jbc.M117.817510. Epub 2017 Oct 17.

10.

Recycling of iron via autophagy is critical for the transition from glycolytic to respiratory growth.

Horie T, Kawamata T, Matsunami M, Ohsumi Y.

J Biol Chem. 2017 May 19;292(20):8533-8543. doi: 10.1074/jbc.M116.762963. Epub 2017 Mar 20.

11.

Zinc starvation induces autophagy in yeast.

Kawamata T, Horie T, Matsunami M, Sasaki M, Ohsumi Y.

J Biol Chem. 2017 May 19;292(20):8520-8530. doi: 10.1074/jbc.M116.762948. Epub 2017 Mar 6.

12.

Functional identification of AtAVT3, a family of vacuolar amino acid transporters, in Arabidopsis.

Fujiki Y, Teshima H, Kashiwao S, Kawano-Kawada M, Ohsumi Y, Kakinuma Y, Sekito T.

FEBS Lett. 2017 Jan;591(1):5-15. doi: 10.1002/1873-3468.12507. Epub 2016 Dec 19.

13.

The Intrinsically Disordered Protein Atg13 Mediates Supramolecular Assembly of Autophagy Initiation Complexes.

Yamamoto H, Fujioka Y, Suzuki SW, Noshiro D, Suzuki H, Kondo-Kakuta C, Kimura Y, Hirano H, Ando T, Noda NN, Ohsumi Y.

Dev Cell. 2016 Jul 11;38(1):86-99. doi: 10.1016/j.devcel.2016.06.015.

14.

Structural Basis for Receptor-Mediated Selective Autophagy of Aminopeptidase I Aggregates.

Yamasaki A, Watanabe Y, Adachi W, Suzuki K, Matoba K, Kirisako H, Kumeta H, Nakatogawa H, Ohsumi Y, Inagaki F, Noda NN.

Cell Rep. 2016 Jun 28;16(1):19-27. doi: 10.1016/j.celrep.2016.05.066. Epub 2016 Jun 16.

15.

The Thermotolerant Yeast Kluyveromyces marxianus Is a Useful Organism for Structural and Biochemical Studies of Autophagy.

Yamamoto H, Shima T, Yamaguchi M, Mochizuki Y, Hoshida H, Kakuta S, Kondo-Kakuta C, Noda NN, Inagaki F, Itoh T, Akada R, Ohsumi Y.

J Biol Chem. 2015 Dec 4;290(49):29506-18. doi: 10.1074/jbc.M115.684233. Epub 2015 Oct 6.

16.

Phospholipid methylation controls Atg32-mediated mitophagy and Atg8 recycling.

Sakakibara K, Eiyama A, Suzuki SW, Sakoh-Nakatogawa M, Okumura N, Tani M, Hashimoto A, Nagumo S, Kondo-Okamoto N, Kondo-Kakuta C, Asai E, Kirisako H, Nakatogawa H, Kuge O, Takao T, Ohsumi Y, Okamoto K.

EMBO J. 2015 Nov 3;34(21):2703-19. doi: 10.15252/embj.201591440. Epub 2015 Oct 5.

17.

The yeast chromatin remodeler Rsc1-RSC complex is required for transcriptional activation of autophagy-related genes and inhibition of the TORC1 pathway in response to nitrogen starvation.

Yu F, Imamura Y, Ueno M, Suzuki SW, Ohsumi Y, Yukawa M, Tsuchiya E.

Biochem Biophys Res Commun. 2015 Sep 4;464(4):1248-1253. doi: 10.1016/j.bbrc.2015.07.114. Epub 2015 Jul 26.

PMID:
26212438
18.

Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation.

Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, Oka T, Yasui H, Ueda H, Akazawa Y, Nakayama H, Taneike M, Misaka T, Omiya S, Shah AM, Yamamoto A, Nishida K, Ohsumi Y, Okamoto K, Sakata Y, Otsu K.

Nat Commun. 2015 Jul 6;6:7527. doi: 10.1038/ncomms8527.

19.

Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus.

Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, Ohsumi Y, Nakatogawa H.

Nature. 2015 Jun 18;522(7556):359-62. doi: 10.1038/nature14506. Epub 2015 Jun 3.

PMID:
26040717
20.

Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation.

Suzuki SW, Yamamoto H, Oikawa Y, Kondo-Kakuta C, Kimura Y, Hirano H, Ohsumi Y.

Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3350-5. doi: 10.1073/pnas.1421092112. Epub 2015 Mar 3.

21.

Localization of Atg3 to autophagy-related membranes and its enhancement by the Atg8-family interacting motif to promote expansion of the membranes.

Sakoh-Nakatogawa M, Kirisako H, Nakatogawa H, Ohsumi Y.

FEBS Lett. 2015 Mar 12;589(6):744-9. doi: 10.1016/j.febslet.2015.02.003. Epub 2015 Feb 11.

22.

Membrane morphology is actively transformed by covalent binding of the protein Atg8 to PE-lipids.

Knorr RL, Nakatogawa H, Ohsumi Y, Lipowsky R, Baumgart T, Dimova R.

PLoS One. 2014 Dec 18;9(12):e115357. doi: 10.1371/journal.pone.0115357. eCollection 2014.

23.

A novel role for 12/15-lipoxygenase in regulating autophagy.

Morgan AH, Hammond VJ, Sakoh-Nakatogawa M, Ohsumi Y, Thomas CP, Blanchet F, Piguet V, Kiselyov K, O'Donnell VB.

Redox Biol. 2015;4:40-7. doi: 10.1016/j.redox.2014.11.005. Epub 2014 Dec 3.

24.

Bulk RNA degradation by nitrogen starvation-induced autophagy in yeast.

Huang H, Kawamata T, Horie T, Tsugawa H, Nakayama Y, Ohsumi Y, Fukusaki E.

EMBO J. 2015 Jan 13;34(2):154-68. doi: 10.15252/embj.201489083. Epub 2014 Dec 2.

25.

Hrr25 triggers selective autophagy-related pathways by phosphorylating receptor proteins.

Tanaka C, Tan LJ, Mochida K, Kirisako H, Koizumi M, Asai E, Sakoh-Nakatogawa M, Ohsumi Y, Nakatogawa H.

J Cell Biol. 2014 Oct 13;207(1):91-105. doi: 10.1083/jcb.201402128. Epub 2014 Oct 6.

26.

Hrr25 phosphorylates the autophagic receptor Atg34 to promote vacuolar transport of α-mannosidase under nitrogen starvation conditions.

Mochida K, Ohsumi Y, Nakatogawa H.

FEBS Lett. 2014 Nov 3;588(21):3862-9. doi: 10.1016/j.febslet.2014.09.032. Epub 2014 Oct 2.

27.

Autophagy: close contact keeps out the uninvited.

Nakatogawa H, Ohsumi Y.

Curr Biol. 2014 Jun 16;24(12):R560-R562. doi: 10.1016/j.cub.2014.05.013.

28.

Structural basis of starvation-induced assembly of the autophagy initiation complex.

Fujioka Y, Suzuki SW, Yamamoto H, Kondo-Kakuta C, Kimura Y, Hirano H, Akada R, Inagaki F, Ohsumi Y, Noda NN.

Nat Struct Mol Biol. 2014 Jun;21(6):513-21. doi: 10.1038/nsmb.2822. Epub 2014 May 4.

PMID:
24793651
29.

Plant autophagy is responsible for peroxisomal transition and plays an important role in the maintenance of peroxisomal quality.

Shibata M, Oikawa K, Yoshimoto K, Goto-Yamada S, Mano S, Yamada K, Kondo M, Hayashi M, Sakamoto W, Ohsumi Y, Nishimura M.

Autophagy. 2014 May;10(5):936-7. doi: 10.4161/auto.28529. Epub 2014 Mar 26.

30.

Different phosphatidylinositol 3-phosphate asymmetries in yeast and mammalian autophagosomes revealed by a new electron microscopy technique.

Fujimoto T, Yamamoto H, Ohsumi Y.

Autophagy. 2014 May;10(5):933-5. doi: 10.4161/auto.28489. Epub 2014 Mar 24.

31.

Proteomic profiling of autophagosome cargo in Saccharomyces cerevisiae.

Suzuki K, Nakamura S, Morimoto M, Fujii K, Noda NN, Inagaki F, Ohsumi Y.

PLoS One. 2014 Mar 13;9(3):e91651. doi: 10.1371/journal.pone.0091651. eCollection 2014.

32.

Yeast and mammalian autophagosomes exhibit distinct phosphatidylinositol 3-phosphate asymmetries.

Cheng J, Fujita A, Yamamoto H, Tatematsu T, Kakuta S, Obara K, Ohsumi Y, Fujimoto T.

Nat Commun. 2014;5:3207. doi: 10.1038/ncomms4207. Erratum in: Nat Commun. 2014;5:4608.

PMID:
24492518
33.

Organ-specific quality control of plant peroxisomes is mediated by autophagy.

Yoshimoto K, Shibata M, Kondo M, Oikawa K, Sato M, Toyooka K, Shirasu K, Nishimura M, Ohsumi Y.

J Cell Sci. 2014 Mar 15;127(Pt 6):1161-8. doi: 10.1242/jcs.139709. Epub 2014 Jan 24.

34.

Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis.

Shibata M, Oikawa K, Yoshimoto K, Kondo M, Mano S, Yamada K, Hayashi M, Sakamoto W, Ohsumi Y, Nishimura M.

Plant Cell. 2013 Dec;25(12):4967-83. doi: 10.1105/tpc.113.116947. Epub 2013 Dec 24. Erratum in: Plant Cell. 2014 Mar;26(3):1377.

35.

Historical landmarks of autophagy research.

Ohsumi Y.

Cell Res. 2014 Jan;24(1):9-23. doi: 10.1038/cr.2013.169. Epub 2013 Dec 24. Review.

36.

Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity.

Araki Y, Ku WC, Akioka M, May AI, Hayashi Y, Arisaka F, Ishihama Y, Ohsumi Y.

J Cell Biol. 2013 Oct 28;203(2):299-313. doi: 10.1083/jcb.201304123.

37.

Two-colored fluorescence correlation spectroscopy screening for LC3-P62 interaction inhibitors.

Tsuganezawa K, Shinohara Y, Ogawa N, Tsuboi S, Okada N, Mori M, Yokoyama S, Noda NN, Inagaki F, Ohsumi Y, Tanaka A.

J Biomol Screen. 2013 Oct;18(9):1103-9. doi: 10.1177/1087057113492200. Epub 2013 Jun 5.

PMID:
23741014
38.

Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae.

Suzuki K, Akioka M, Kondo-Kakuta C, Yamamoto H, Ohsumi Y.

J Cell Sci. 2013 Jun 1;126(Pt 11):2534-44. doi: 10.1242/jcs.122960. Epub 2013 Apr 2.

39.

Atg12-Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site.

Sakoh-Nakatogawa M, Matoba K, Asai E, Kirisako H, Ishii J, Noda NN, Inagaki F, Nakatogawa H, Ohsumi Y.

Nat Struct Mol Biol. 2013 Apr;20(4):433-9. doi: 10.1038/nsmb.2527. Epub 2013 Mar 17.

PMID:
23503366
40.

Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation.

Noda NN, Fujioka Y, Hanada T, Ohsumi Y, Inagaki F.

EMBO Rep. 2013 Feb;14(2):206-11. doi: 10.1038/embor.2012.208. Epub 2012 Dec 14.

41.

Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7.

Yamaguchi M, Matoba K, Sawada R, Fujioka Y, Nakatogawa H, Yamamoto H, Kobashigawa Y, Hoshida H, Akada R, Ohsumi Y, Noda NN, Inagaki F.

Nat Struct Mol Biol. 2012 Dec;19(12):1250-6. doi: 10.1038/nsmb.2451. Epub 2012 Nov 11.

PMID:
23142983
42.

Atg9 vesicles recruit vesicle-tethering proteins Trs85 and Ypt1 to the autophagosome formation site.

Kakuta S, Yamamoto H, Negishi L, Kondo-Kakuta C, Hayashi N, Ohsumi Y.

J Biol Chem. 2012 Dec 28;287(53):44261-9. doi: 10.1074/jbc.M112.411454. Epub 2012 Nov 5.

43.

Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18.

Watanabe Y, Kobayashi T, Yamamoto H, Hoshida H, Akada R, Inagaki F, Ohsumi Y, Noda NN.

J Biol Chem. 2012 Sep 14;287(38):31681-90. doi: 10.1074/jbc.M112.397570. Epub 2012 Jul 31.

44.

Atg9 vesicles are an important membrane source during early steps of autophagosome formation.

Yamamoto H, Kakuta S, Watanabe TM, Kitamura A, Sekito T, Kondo-Kakuta C, Ichikawa R, Kinjo M, Ohsumi Y.

J Cell Biol. 2012 Jul 23;198(2):219-33. doi: 10.1083/jcb.201202061.

45.

The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate autophagosome formation.

Nakatogawa H, Ohbayashi S, Sakoh-Nakatogawa M, Kakuta S, Suzuki SW, Kirisako H, Kondo-Kakuta C, Noda NN, Yamamoto H, Ohsumi Y.

J Biol Chem. 2012 Aug 17;287(34):28503-7. doi: 10.1074/jbc.C112.387514. Epub 2012 Jul 9.

46.

Autophagosome formation can be achieved in the absence of Atg18 by expressing engineered PAS-targeted Atg2.

Kobayashi T, Suzuki K, Ohsumi Y.

FEBS Lett. 2012 Jul 30;586(16):2473-8. doi: 10.1016/j.febslet.2012.06.008. Epub 2012 Jun 19.

47.

Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate.

Yamaguchi M, Noda NN, Yamamoto H, Shima T, Kumeta H, Kobashigawa Y, Akada R, Ohsumi Y, Inagaki F.

Structure. 2012 Jul 3;20(7):1244-54. doi: 10.1016/j.str.2012.04.018. Epub 2012 Jun 7.

48.

Yoshinori Ohsumi: autophagy from beginning to end. Interview by Caitlin Sedwick.

Ohsumi Y.

J Cell Biol. 2012 Apr 16;197(2):164-5. doi: 10.1083/jcb.1972pi. No abstract available.

49.

Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy.

Noda NN, Kobayashi T, Adachi W, Fujioka Y, Ohsumi Y, Inagaki F.

J Biol Chem. 2012 May 11;287(20):16256-66. doi: 10.1074/jbc.M112.348250. Epub 2012 Mar 21.

50.

SDS-PAGE techniques to study ubiquitin-like conjugation systems in yeast autophagy.

Nakatogawa H, Ohsumi Y.

Methods Mol Biol. 2012;832:519-29. doi: 10.1007/978-1-61779-474-2_37.

PMID:
22350910

Supplemental Content

Loading ...
Support Center