Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 29

1.

Atomic clock with 1×10(-18) room-temperature blackbody Stark uncertainty.

Beloy K, Hinkley N, Phillips NB, Sherman JA, Schioppo M, Lehman J, Feldman A, Hanssen LM, Oates CW, Ludlow AD.

Phys Rev Lett. 2014 Dec 31;113(26):260801. Epub 2014 Dec 24.

PMID:
25615296
2.

An atomic clock with 10(-18) instability.

Hinkley N, Sherman JA, Phillips NB, Schioppo M, Lemke ND, Beloy K, Pizzocaro M, Oates CW, Ludlow AD.

Science. 2013 Sep 13;341(6151):1215-8. doi: 10.1126/science.1240420. Epub 2013 Aug 22.

3.

High-accuracy measurement of atomic polarizability in an optical lattice clock.

Sherman JA, Lemke ND, Hinkley N, Pizzocaro M, Fox RW, Ludlow AD, Oates CW.

Phys Rev Lett. 2012 Apr 13;108(15):153002. Epub 2012 Apr 13.

PMID:
22587248
4.

p-Wave cold collisions in an optical lattice clock.

Lemke ND, von Stecher J, Sherman JA, Rey AM, Oates CW, Ludlow AD.

Phys Rev Lett. 2011 Sep 2;107(10):103902. Epub 2011 Aug 30.

PMID:
21981504
5.

Characterization of the induction and cellular role of the BaeSR two-component envelope stress response of Escherichia coli.

Leblanc SK, Oates CW, Raivio TL.

J Bacteriol. 2011 Jul;193(13):3367-75. doi: 10.1128/JB.01534-10. Epub 2011 Apr 22.

6.

Spin-1/2 optical lattice clock.

Lemke ND, Ludlow AD, Barber ZW, Fortier TM, Diddams SA, Jiang Y, Jefferts SR, Heavner TP, Parker TE, Oates CW.

Phys Rev Lett. 2009 Aug 7;103(6):063001. Epub 2009 Aug 3.

PMID:
19792559
7.

Probing interactions between ultracold fermions.

Campbell GK, Boyd MM, Thomsen JW, Martin MJ, Blatt S, Swallows MD, Nicholson TL, Fortier T, Oates CW, Diddams SA, Lemke ND, Naidon P, Julienne P, Ye J, Ludlow AD.

Science. 2009 Apr 17;324(5925):360-3. doi: 10.1126/science.1169724.

8.

Frequency shifts in an optical lattice clock due to magnetic-dipole and electric-quadrupole transitions.

Taichenachev AV, Yudin VI, Ovsiannikov VD, Pal'chikov VG, Oates CW.

Phys Rev Lett. 2008 Nov 7;101(19):193601. Epub 2008 Nov 4.

PMID:
19113267
9.

Optical lattice induced light shifts in an yb atomic clock.

Barber ZW, Stalnaker JE, Lemke ND, Poli N, Oates CW, Fortier TM, Diddams SA, Hollberg L, Hoyt CW, Taichenachev AV, Yudin VI.

Phys Rev Lett. 2008 Mar 14;100(10):103002. Epub 2008 Mar 11.

PMID:
18352181
10.

Sr lattice clock at 1 x 10(-16) fractional uncertainty by remote optical evaluation with a Ca clock.

Ludlow AD, Zelevinsky T, Campbell GK, Blatt S, Boyd MM, de Miranda MH, Martin MJ, Thomsen JW, Foreman SM, Ye J, Fortier TM, Stalnaker JE, Diddams SA, Le Coq Y, Barber ZW, Poli N, Lemke ND, Beck KM, Oates CW.

Science. 2008 Mar 28;319(5871):1805-8. doi: 10.1126/science.1153341. Epub 2008 Feb 14.

11.
12.

Direct comparison of two cold-atom-based optical frequency standards by using a femtosecond-laser comb.

Vogel KR, Diddams SA, Oates CW, Curtis EA, Rafac RJ, Itano WM, Bergquist JC, Fox RW, Lee WD, Wells JS, Hollberg L.

Opt Lett. 2001 Jan 15;26(2):102-4.

PMID:
18033520
13.

Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb.

Fortier TM, Coq YL, Stalnaker JE, Ortega D, Diddams SA, Oates CW, Hollberg L.

Phys Rev Lett. 2006 Oct 20;97(16):163905. Epub 2006 Oct 19.

PMID:
17155398
14.

Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice.

Barber ZW, Hoyt CW, Oates CW, Hollberg L, Taichenachev AV, Yudin VI.

Phys Rev Lett. 2006 Mar 3;96(8):083002. Epub 2006 Mar 1.

PMID:
16606176
15.

Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks.

Taichenachev AV, Yudin VI, Oates CW, Hoyt CW, Barber ZW, Hollberg L.

Phys Rev Lett. 2006 Mar 3;96(8):083001. Epub 2006 Mar 1.

PMID:
16606175
16.

Observation and absolute frequency measurements of the 1S0-3P0 optical clock transition in neutral ytterbium.

Hoyt CW, Barber ZW, Oates CW, Fortier TM, Diddams SA, Hollberg L.

Phys Rev Lett. 2005 Aug 19;95(8):083003. Epub 2005 Aug 19.

PMID:
16196856
17.

Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser.

Kim K, Washburn BR, Wilpers G, Oates CW, Hollberg L, Newbury NR, Diddams SA, Nicholson JW, Yan MF.

Opt Lett. 2005 Apr 15;30(8):932-4.

PMID:
15865403
18.

Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references.

Bartels A, Diddams SA, Oates CW, Wilpers G, Bergquist JC, Oskay WH, Hollberg L.

Opt Lett. 2005 Mar 15;30(6):667-9.

PMID:
15792011
19.

Standards of time and frequency at the outset of the 21st century.

Diddams SA, Bergquist JC, Jefferts SR, Oates CW.

Science. 2004 Nov 19;306(5700):1318-24.

PMID:
15550659
20.

Stabilization of femtosecond laser frequency combs with subhertz residual linewidths.

Bartels A, Oates CW, Hollberg L, Diddams SA.

Opt Lett. 2004 May 15;29(10):1081-3.

PMID:
15181992
21.

Absolute-frequency measurements with a stabilized near-infrared optical frequency comb from a Cr:forsterite laser.

Corwin KL, Thomann I, Dennis T, Fox RW, Swann W, Curtis EA, Oates CW, Wilpers G, Bartels A, Gilbert SL, Hollberg L, Newbury NR, Diddams SA, Nicholson JW, Yan MF.

Opt Lett. 2004 Feb 15;29(4):397-9.

PMID:
14971765
22.

An optical clock based on a single trapped 199Hg+ ion.

Diddams SA, Udem T, Bergquist JC, Curtis EA, Drullinger RE, Hollberg L, Itano WM, Lee WD, Oates CW, Vogel KR, Wineland DJ.

Science. 2001 Aug 3;293(5531):825-8. Epub 2001 Jul 12.

23.

Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser.

Udem T, Diddams SA, Vogel KR, Oates CW, Curtis EA, Lee WD, Itano WM, Drullinger RE, Bergquist JC, Hollberg L.

Phys Rev Lett. 2001 May 28;86(22):4996-9.

PMID:
11384404
24.

High precision linewidth measurement of laser-cooled atoms: Resolution of the Na 3p 2P3/2 lifetime discrepancy.

Oates CW, Vogel KR, Hall JL.

Phys Rev Lett. 1996 Apr 15;76(16):2866-2869. No abstract available.

PMID:
10060811
25.
26.
27.

Continuous high-flux monovelocity atomic beam based on a broadband laser-cooling technique.

Zhu M, Oates CW, Hall JL.

Phys Rev Lett. 1991 Jul 1;67(1):46-49. No abstract available.

PMID:
10044048
28.

Microscope objectives, cover slips, and spherical aberration: authors' reply to comments.

Oates CW, Young M.

Appl Opt. 1988 Jun 1;27(11). doi: 10.1364/AO.27.2106_1. No abstract available.

PMID:
20531710
29.

Microscope objectives, cover slips, and spherical aberration.

Oates CW, Young M.

Appl Opt. 1987 Jun 1;26(11):2043. doi: 10.1364/AO.26.002043. No abstract available.

PMID:
20489815

Supplemental Content

Loading ...
Support Center