Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 44

1.

Annexins induce curvature on free-edge membranes displaying distinct morphologies.

Boye TL, Jeppesen JC, Maeda K, Pezeshkian W, Solovyeva V, Nylandsted J, Simonsen AC.

Sci Rep. 2018 Jul 9;8(1):10309. doi: 10.1038/s41598-018-28481-z.

2.

Using Liprotides to Deliver Cholesterol to the Plasma Membrane.

Frislev HS, Nielsen J, Nylandsted J, Otzen D.

J Membr Biol. 2018 Aug;251(4):581-592. doi: 10.1007/s00232-018-0034-y. Epub 2018 Apr 17.

PMID:
29666892
3.

Correction for Gyrd-Hansen et al., "Apoptosome-Independent Activation of the Lysosomal Cell Death Pathway by Caspase-9".

Gyrd-Hansen M, Farkas T, Fehrenbacher N, Bastholm L, Høyer-Hansen M, Elling F, Wallach D, Flavell R, Kroemer G, Nylandsted J, Jäättelä M.

Mol Cell Biol. 2017 Dec 29;38(2). pii: e00563-17. doi: 10.1128/MCB.00563-17. Print 2018 Jan 15. No abstract available.

4.

Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair.

Boye TL, Maeda K, Pezeshkian W, Sønder SL, Haeger SC, Gerke V, Simonsen AC, Nylandsted J.

Nat Commun. 2017 Nov 20;8(1):1623. doi: 10.1038/s41467-017-01743-6.

5.

Liprotides kill cancer cells by disrupting the plasma membrane.

Frislev HS, Boye TL, Nylandsted J, Otzen D.

Sci Rep. 2017 Nov 9;7(1):15129. doi: 10.1038/s41598-017-15003-6.

6.

Quantitative Profiling of Lysosomal Lipidome by Shotgun Lipidomics.

Bilgin M, Nylandsted J, Jäättelä M, Maeda K.

Methods Mol Biol. 2017;1594:19-34. doi: 10.1007/978-1-4939-6934-0_2.

PMID:
28456974
7.

Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization.

Hernández-Tiedra S, Fabriàs G, Dávila D, Salanueva ÍJ, Casas J, Montes LR, Antón Z, García-Taboada E, Salazar-Roa M, Lorente M, Nylandsted J, Armstrong J, López-Valero I, McKee CS, Serrano-Puebla A, García-López R, González-Martínez J, Abad JL, Hanada K, Boya P, Goñi F, Guzmán M, Lovat P, Jäättelä M, Alonso A, Velasco G.

Autophagy. 2016 Nov;12(11):2213-2229. Epub 2016 Sep 16.

8.

Annexins in plasma membrane repair.

Boye TL, Nylandsted J.

Biol Chem. 2016 Oct 1;397(10):961-9. doi: 10.1515/hsz-2016-0171. Review.

PMID:
27341560
9.

Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment.

Ellegaard AM, Dehlendorff C, Vind AC, Anand A, Cederkvist L, Petersen NHT, Nylandsted J, Stenvang J, Mellemgaard A, Østerlind K, Friis S, Jäättelä M.

EBioMedicine. 2016 Jul;9:130-139. doi: 10.1016/j.ebiom.2016.06.013. Epub 2016 Jun 7.

10.

Methods for Probing Lysosomal Membrane Permeabilization.

Jäättelä M, Nylandsted J.

Cold Spring Harb Protoc. 2015 Nov 2;2015(11):975-8. doi: 10.1101/pdb.top070367.

PMID:
26527770
11.

Quantification of Lysosomal Membrane Permeabilization by Cytosolic Cathepsin and β-N-Acetyl-Glucosaminidase Activity Measurements.

Jäättelä M, Nylandsted J.

Cold Spring Harb Protoc. 2015 Nov 2;2015(11):1017-23. doi: 10.1101/pdb.prot086165.

PMID:
26527764
12.

Annexins are instrumental for efficient plasma membrane repair in cancer cells.

Lauritzen SP, Boye TL, Nylandsted J.

Semin Cell Dev Biol. 2015 Sep;45:32-8. doi: 10.1016/j.semcdb.2015.10.028. Epub 2015 Oct 20. Review.

PMID:
26498035
13.

A Method to Monitor Lysosomal Membrane Permeabilization by Immunocytochemistry.

Groth-Pedersen L, Jäättelä M, Nylandsted J.

Cold Spring Harb Protoc. 2015 Oct 1;2015(10):904-7. doi: 10.1101/pdb.prot086181.

PMID:
26430254
14.

Visualizing Lysosomal Membrane Permeabilization by Fluorescent Dextran Release.

Ellegaard AM, Jäättelä M, Nylandsted J.

Cold Spring Harb Protoc. 2015 Oct 1;2015(10):900-3. doi: 10.1101/pdb.prot086173.

PMID:
26430253
15.

Methods for the quantification of lysosomal membrane permeabilization: a hallmark of lysosomal cell death.

Aits S, Jäättelä M, Nylandsted J.

Methods Cell Biol. 2015;126:261-85. doi: 10.1016/bs.mcb.2014.10.032. Epub 2015 Jan 14.

PMID:
25665450
16.

S100 and annexin proteins identify cell membrane damage as the Achilles heel of metastatic cancer cells.

Jaiswal JK, Nylandsted J.

Cell Cycle. 2015;14(4):502-9. doi: 10.1080/15384101.2014.995495.

17.

S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells.

Jaiswal JK, Lauritzen SP, Scheffer L, Sakaguchi M, Bunkenborg J, Simon SM, Kallunki T, Jäättelä M, Nylandsted J.

Nat Commun. 2014 May 8;5:3795. doi: 10.1038/ncomms4795.

18.

Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase.

Petersen NH, Olsen OD, Groth-Pedersen L, Ellegaard AM, Bilgin M, Redmer S, Ostenfeld MS, Ulanet D, Dovmark TH, Lønborg A, Vindeløv SD, Hanahan D, Arenz C, Ejsing CS, Kirkegaard T, Rohde M, Nylandsted J, Jäättelä M.

Cancer Cell. 2013 Sep 9;24(3):379-93. doi: 10.1016/j.ccr.2013.08.003.

19.

Sunitinib and SU11652 inhibit acid sphingomyelinase, destabilize lysosomes, and inhibit multidrug resistance.

Ellegaard AM, Groth-Pedersen L, Oorschot V, Klumperman J, Kirkegaard T, Nylandsted J, Jäättelä M.

Mol Cancer Ther. 2013 Oct;12(10):2018-30. doi: 10.1158/1535-7163.MCT-13-0084. Epub 2013 Aug 6.

20.

Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells.

Groth-Pedersen L, Aits S, Corcelle-Termeau E, Petersen NH, Nylandsted J, Jäättelä M.

PLoS One. 2012;7(10):e45381. doi: 10.1371/journal.pone.0045381. Epub 2012 Oct 11.

21.

ErbB2-driven breast cancer cell invasion depends on a complex signaling network activating myeloid zinc finger-1-dependent cathepsin B expression.

Rafn B, Nielsen CF, Andersen SH, Szyniarowski P, Corcelle-Termeau E, Valo E, Fehrenbacher N, Olsen CJ, Daugaard M, Egebjerg C, Bøttzauw T, Kohonen P, Nylandsted J, Hautaniemi S, Moreira J, Jäättelä M, Kallunki T.

Mol Cell. 2012 Mar 30;45(6):764-76. doi: 10.1016/j.molcel.2012.01.029.

22.

ErbB2-associated changes in the lysosomal proteome.

Nylandsted J, Becker AC, Bunkenborg J, Andersen JS, Dengjel J, Jäättelä M.

Proteomics. 2011 Jul;11(14):2830-8. doi: 10.1002/pmic.201000734. Epub 2011 Jun 14.

PMID:
21674799
23.

A comprehensive siRNA screen for kinases that suppress macroautophagy in optimal growth conditions.

Szyniarowski P, Corcelle-Termeau E, Farkas T, Høyer-Hansen M, Nylandsted J, Kallunki T, Jäättelä M.

Autophagy. 2011 Aug;7(8):892-903. Epub 2011 Aug 1.

PMID:
21508686
24.

NBCn1 and NHE1 expression and activity in DeltaNErbB2 receptor-expressing MCF-7 breast cancer cells: contributions to pHi regulation and chemotherapy resistance.

Lauritzen G, Jensen MB, Boedtkjer E, Dybboe R, Aalkjaer C, Nylandsted J, Pedersen SF.

Exp Cell Res. 2010 Sep 10;316(15):2538-53. doi: 10.1016/j.yexcr.2010.06.005. Epub 2010 Jun 11.

PMID:
20542029
25.

Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology.

Kirkegaard T, Roth AG, Petersen NH, Mahalka AK, Olsen OD, Moilanen I, Zylicz A, Knudsen J, Sandhoff K, Arenz C, Kinnunen PK, Nylandsted J, Jäättelä M.

Nature. 2010 Jan 28;463(7280):549-53. doi: 10.1038/nature08710.

PMID:
20111001
26.

BAMLET activates a lysosomal cell death program in cancer cells.

Rammer P, Groth-Pedersen L, Kirkegaard T, Daugaard M, Rytter A, Szyniarowski P, Høyer-Hansen M, Povlsen LK, Nylandsted J, Larsen JE, Jäättelä M.

Mol Cancer Ther. 2010 Jan;9(1):24-32. doi: 10.1158/1535-7163.MCT-09-0559. Epub 2010 Jan 6.

27.

Depletion of kinesin 5B affects lysosomal distribution and stability and induces peri-nuclear accumulation of autophagosomes in cancer cells.

Cardoso CM, Groth-Pedersen L, Høyer-Hansen M, Kirkegaard T, Corcelle E, Andersen JS, Jäättelä M, Nylandsted J.

PLoS One. 2009;4(2):e4424. doi: 10.1371/journal.pone.0004424. Epub 2009 Feb 10.

28.

Extracellular heat shock protein 70: a potential prognostic marker for chronic myeloid leukemia.

Nylandsted J.

Leuk Res. 2009 Feb;33(2):205-6. doi: 10.1016/j.leukres.2008.07.020. Epub 2008 Aug 26. Review. No abstract available.

PMID:
18752847
29.

Anti-cancer agent siramesine is a lysosomotropic detergent that induces cytoprotective autophagosome accumulation.

Ostenfeld MS, Høyer-Hansen M, Bastholm L, Fehrenbacher N, Olsen OD, Groth-Pedersen L, Puustinen P, Kirkegaard-Sørensen T, Nylandsted J, Farkas T, Jäättelä M.

Autophagy. 2008 May;4(4):487-99. Epub 2008 Feb 22.

PMID:
18305408
30.
31.

Vincristine induces dramatic lysosomal changes and sensitizes cancer cells to lysosome-destabilizing siramesine.

Groth-Pedersen L, Ostenfeld MS, Høyer-Hansen M, Nylandsted J, Jäättelä M.

Cancer Res. 2007 Mar 1;67(5):2217-25.

32.

Apoptosome-independent activation of the lysosomal cell death pathway by caspase-9.

Gyrd-Hansen M, Farkas T, Fehrenbacher N, Bastholm L, Høyer-Hansen M, Elling F, Wallach D, Flavell R, Kroemer G, Nylandsted J, Jäättelä M.

Mol Cell Biol. 2006 Nov;26(21):7880-91. Epub 2006 Sep 11. Erratum in: Mol Cell Biol. 2017 Dec 29;38(2):.

33.

Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms.

Rohde M, Daugaard M, Jensen MH, Helin K, Nylandsted J, Jäättelä M.

Genes Dev. 2005 Mar 1;19(5):570-82.

34.

Inhibition of Chk1 by CEP-3891 accelerates mitotic nuclear fragmentation in response to ionizing Radiation.

Syljuåsen RG, Sørensen CS, Nylandsted J, Lukas C, Lukas J, Bartek J.

Cancer Res. 2004 Dec 15;64(24):9035-40.

35.

Heat shock protein 70 promotes cancer cell viability by safeguarding lysosomal integrity.

Gyrd-Hansen M, Nylandsted J, Jäättelä M.

Cell Cycle. 2004 Dec;3(12):1484-5. Epub 2004 Dec 6. Review.

PMID:
15539949
36.

[Heat shock protein 70: an important survival factor for cancer cells].

Nylandsted J, Jäättelä M.

Ugeskr Laeger. 2004 Sep 6;166(37):3184-6. Danish. No abstract available.

PMID:
15384368
37.

Heat shock protein 70 inhibits shrinkage-induced programmed cell death via mechanisms independent of effects on cell volume-regulatory membrane transport proteins.

Nylandsted J, Jäättelä M, Hoffmann EK, Pedersen SF.

Pflugers Arch. 2004 Nov;449(2):175-85. Epub 2004 Aug 31.

PMID:
15340851
38.

Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization.

Nylandsted J, Gyrd-Hansen M, Danielewicz A, Fehrenbacher N, Lademann U, Høyer-Hansen M, Weber E, Multhoff G, Rohde M, Jäättelä M.

J Exp Med. 2004 Aug 16;200(4):425-35.

39.

Lack of neuroprotection by heat shock protein 70 overexpression in a mouse model of global cerebral ischemia.

Olsson T, Hansson O, Nylandsted J, Jäättelä M, Smith ML, Wieloch T.

Exp Brain Res. 2004 Feb;154(4):442-9. Epub 2003 Oct 25.

PMID:
14579003
40.

Overexpression of heat shock protein 70 in R6/2 Huntington's disease mice has only modest effects on disease progression.

Hansson O, Nylandsted J, Castilho RF, Leist M, Jäättelä M, Brundin P.

Brain Res. 2003 Apr 25;970(1-2):47-57.

PMID:
12706247
41.

Eradication of glioblastoma, and breast and colon carcinoma xenografts by Hsp70 depletion.

Nylandsted J, Wick W, Hirt UA, Brand K, Rohde M, Leist M, Weller M, Jäättelä M.

Cancer Res. 2002 Dec 15;62(24):7139-42.

42.

Heat shock protein 70 is required for the survival of cancer cells.

Nylandsted J, Brand K, Jäättelä M.

Ann N Y Acad Sci. 2000;926:122-5.

PMID:
11193027
43.

Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2.

Nylandsted J, Rohde M, Brand K, Bastholm L, Elling F, Jäättelä M.

Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7871-6.

44.

Expression of a p16INK4a-specific ribozyme downmodulates p16INK4a abundance and accelerates cell proliferation.

Nylandsted J, Rohde M, Bartek J, Strauss M.

FEBS Lett. 1998 Sep 25;436(1):41-5.

Supplemental Content

Loading ...
Support Center