Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 67

1.

Tibial slope and medial meniscectomy significantly influence short-term knee laxity following ACL reconstruction.

Dejour D, Pungitore M, Valluy J, Nover L, Saffarini M, Demey G.

Knee Surg Sports Traumatol Arthrosc. 2019 Nov;27(11):3481-3489. doi: 10.1007/s00167-019-05435-0. Epub 2019 Feb 26.

PMID:
30809722
2.

Early outcomes of an anatomic trochlear-cutting patellofemoral arthroplasty: patient selection is key.

Dejour D, Saffarini M, Malemo Y, Pungitore M, Valluy J, Nover L, Demey G.

Knee Surg Sports Traumatol Arthrosc. 2019 Jul;27(7):2297-2302. doi: 10.1007/s00167-019-05368-8. Epub 2019 Feb 5.

PMID:
30721343
3.

Bipolar Sealers Do not Improve Blood Loss nor Functional Outcomes of Primary Total Knee Arthroplasty.

Pasqualotto S, Demey G, Michelet A, Nover L, Saffarini M, Dejour D.

J Knee Surg. 2018 Dec 21. doi: 10.1055/s-0038-1676516. [Epub ahead of print]

PMID:
30577050
4.

Clinical and MRI Outcomes 10 Years After Repair of Massive Posterosuperior Rotator Cuff Tears.

Collin P, Colmar M, Thomazeau H, Mansat P, Boileau P, Valenti P, Saffarini M, Nover L, Kempf JF.

J Bone Joint Surg Am. 2018 Nov 7;100(21):1854-1863. doi: 10.2106/JBJS.17.01190.

PMID:
30399080
5.

Preoperative laxity in ACL-deficient knees increases with posterior tibial slope and medial meniscal tears.

Dejour D, Pungitore M, Valluy J, Nover L, Saffarini M, Demey G.

Knee Surg Sports Traumatol Arthrosc. 2019 Feb;27(2):564-572. doi: 10.1007/s00167-018-5180-3. Epub 2018 Sep 29.

PMID:
30269166
6.

The original Akagi line is the most reliable: a systematic review of landmarks for rotational alignment of the tibial component in TKA.

Saffarini M, Nover L, Tandogan R, Becker R, Moser LB, Hirschmann MT, Indelli PF.

Knee Surg Sports Traumatol Arthrosc. 2019 Apr;27(4):1018-1027. doi: 10.1007/s00167-018-5131-z. Epub 2018 Sep 10.

PMID:
30203197
7.

Corrigendum to "The plant heat stress transcription factor (Hsf) family: Structure, function and evolution" [BBAGRM 1819 (2) 104-119].

Scharf KD, Berberich T, Ebersberger I, Nover L.

Biochim Biophys Acta Gene Regul Mech. 2018 Jan;1861(1):60. doi: 10.1016/j.bbagrm.2017.12.005. Epub 2017 Dec 14. No abstract available.

PMID:
29247802
8.

Correction of Patellofemoral Malalignment With Patellofemoral Arthroplasty.

Valoroso M, Saffarini M, La Barbera G, Toanen C, Hannink G, Nover L, Dejour DH.

J Arthroplasty. 2017 Dec;32(12):3598-3602. doi: 10.1016/j.arth.2017.06.048. Epub 2017 Jul 8.

PMID:
28735802
9.

External rotation of the femoral component increases asymmetry of the posterior condyles.

Bonnin MP, Saffarini M, Nover L, van der Maas J, Haeberle C, Hannink G, Victor J.

Bone Joint J. 2017 Jul;99-B(7):894-903. doi: 10.1302/0301-620X.99B7.BJJ-2016-0717.R1.

PMID:
28663394
10.

Sagittal Plane Corrections around the Knee.

Dejour D, La Barbera G, Pasqualotto S, Valoroso M, Nover L, Reynolds R, Saffarini M.

J Knee Surg. 2017 Oct;30(8):736-745. doi: 10.1055/s-0037-1603637. Epub 2017 Jun 5. No abstract available.

PMID:
28582785
11.

Evolution of trochlear compartment geometry in total knee arthroplasty.

Saffarini M, Demey G, Nover L, Dejour D.

Ann Transl Med. 2016 Jan;4(1):7. doi: 10.3978/j.issn.2305-5839.2015.12.53.

12.

In vitro characterisation of the biomechanical properties of the subchondral mineralised zone of lumbosacral facet joints.

Berteau JP, Nover L, Mielke G, Ivicsics M, Morlock MM, Huber G.

Comput Methods Biomech Biomed Engin. 2013;16 Suppl 1:226-7. doi: 10.1080/10255842.2013.815886. No abstract available.

PMID:
23923919
13.

The plant heat stress transcription factor (Hsf) family: structure, function and evolution.

Scharf KD, Berberich T, Ebersberger I, Nover L.

Biochim Biophys Acta. 2012 Feb;1819(2):104-19. doi: 10.1016/j.bbagrm.2011.10.002. Epub 2011 Oct 17. Review. Erratum in: Biochim Biophys Acta. 2017 Dec 13;:.

PMID:
22033015
14.

Specific interaction between tomato HsfA1 and HsfA2 creates hetero-oligomeric superactivator complexes for synergistic activation of heat stress gene expression.

Chan-Schaminet KY, Baniwal SK, Bublak D, Nover L, Scharf KD.

J Biol Chem. 2009 Jul 31;284(31):20848-57. doi: 10.1074/jbc.M109.007336. Epub 2009 Jun 1.

15.

Plant stress granules and mRNA processing bodies are distinct from heat stress granules.

Weber C, Nover L, Fauth M.

Plant J. 2008 Nov;56(4):517-30. doi: 10.1111/j.1365-313X.2008.03623.x. Epub 2008 Aug 6.

16.

The diversity of plant heat stress transcription factors.

von Koskull-Döring P, Scharf KD, Nover L.

Trends Plant Sci. 2007 Oct;12(10):452-7. Epub 2007 Sep 7. Review.

PMID:
17826296
17.

Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4.

Baniwal SK, Chan KY, Scharf KD, Nover L.

J Biol Chem. 2007 Feb 9;282(6):3605-13. Epub 2006 Dec 6.

18.

The maize heat shock factor-binding protein paralogs EMP2 and HSBP2 interact non-redundantly with specific heat shock factors.

Fu S, Rogowsky P, Nover L, Scanlon MJ.

Planta. 2006 Jun;224(1):42-52. Epub 2005 Dec 6.

PMID:
16331466
19.

Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors.

Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, von Koskull-Döring P.

J Biosci. 2004 Dec;29(4):471-87. Review.

20.

Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1.

Bharti K, Von Koskull-Döring P, Bharti S, Kumar P, Tintschl-Körbitzer A, Treuter E, Nover L.

Plant Cell. 2004 Jun;16(6):1521-35. Epub 2004 May 6.

21.

In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato.

Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD.

Genes Dev. 2002 Jun 15;16(12):1555-67.

22.

Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need?

Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf KD.

Cell Stress Chaperones. 2001 Jul;6(3):177-89. Review.

23.

A genomics approach to the chaperone network of Arabidopsis thaliana.

Nover L, Miernyk JA.

Cell Stress Chaperones. 2001 Jul;6(3):175-6. No abstract available.

24.
25.
26.

Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo.

Löw D, Brändle K, Nover L, Forreiter C.

Planta. 2000 Sep;211(4):575-82.

PMID:
11030557
27.

The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2.

Döring P, Treuter E, Kistner C, Lyck R, Chen A, Nover L.

Plant Cell. 2000 Feb;12(2):265-78.

28.
30.

Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors.

Lyck R, Harmening U, Höhfeld I, Treuter E, Scharf KD, Nover L.

Planta. 1997;202(1):117-25.

PMID:
9177056
31.

Heat stress proteins and transcription factors.

Nover L, Scharf KD.

Cell Mol Life Sci. 1997 Jan;53(1):80-103. Review. No abstract available.

PMID:
9118000
32.

The Hsf world: classification and properties of plant heat stress transcription factors.

Nover L, Scharf KD, Gagliardi D, Vergne P, Czarnecka-Verner E, Gurley WB.

Cell Stress Chaperones. 1996 Dec;1(4):215-23. Review.

33.

Solution structure of the DNA-binding domain of the tomato heat-stress transcription factor HSF24.

Schultheiss J, Kunert O, Gase U, Scharf KD, Nover L, Rüterjans H.

Eur J Biochem. 1996 Mar 15;236(3):911-21.

34.

Heat stress promoters and transcription factors.

Scharf KD, Materna T, Treuter E, Nover L.

Results Probl Cell Differ. 1994;20:125-62. Review. No abstract available.

PMID:
8036313
35.

Two cDNAs for tomato heat stress transcription factors.

Scharf KD, Rose S, Thierfelder J, Nover L.

Plant Physiol. 1993 Aug;102(4):1355-6. No abstract available.

36.

Promoter specificity and deletion analysis of three heat stress transcription factors of tomato.

Treuter E, Nover L, Ohme K, Scharf KD.

Mol Gen Genet. 1993 Jul;240(1):113-25.

PMID:
8341257
37.

HSP68--a DnaK-like heat-stress protein of plant mitochondria.

Neumann D, Emmermann M, Thierfelder JM, zur Nieden U, Clericus M, Braun HP, Nover L, Schmitz UK.

Planta. 1993;190(1):32-43.

PMID:
7763614
39.

Heat shock and development. Introduction.

Nover L, Hightower L.

Results Probl Cell Differ. 1991;17:1-4. Review. No abstract available.

PMID:
1803416
40.

Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF.

Scharf KD, Rose S, Zott W, Schöffl F, Nover L.

EMBO J. 1990 Dec;9(13):4495-501. Erratum in: EMBO J 1991 Apr;10(4):1026. Schöff F [corrected to Schöffl F].

41.

[Molecular cell biology of the heat stress response. II].

Nover L.

Naturwissenschaften. 1990 Aug;77(8):359-65. Review. German.

PMID:
2274068
42.

[Molecular cell biology of the heat stress response. Part I].

Nover L.

Naturwissenschaften. 1990 Jul;77(7):310-6. Review. German.

PMID:
2205807
43.
44.
45.

Heat shock and other stress response systems of plants.

Neumann D, Nover L, Parthier B, Rieger R, Scharf KD, Wollgiehn R, zur Nieden U.

Results Probl Cell Differ. 1989;16:1-155. No abstract available.

PMID:
2636727
46.

Jasmonate-induced alteration of gene expression in barley leaf segments analyzed by in-vivo and in-vitro protein synthesis.

Mueller-Uri F, Parthier B, Nover L.

Planta. 1988 Nov;176(2):241-7. doi: 10.1007/BF00392451.

PMID:
24220779
47.

Control of ribosome biosynthesis in plant cell cultures under heat-shock conditions. Ribosomal RNA.

Nover L, Munsche D, Neumann D, Ohme K, Scharf KD.

Eur J Biochem. 1986 Oct 15;160(2):297-304.

48.
49.
50.

Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves.

Nover L, Scharf KD, Neumann D.

Mol Cell Biol. 1983 Sep;3(9):1648-55.

Supplemental Content

Support Center