Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 36

1.

Deletion of a single glycosyltransferase in Caldicellulosiruptor bescii eliminates protein glycosylation and growth on crystalline cellulose.

Russell J, Kim SK, Duma J, Nothaft H, Himmel ME, Bomble YJ, Szymanski CM, Westpheling J.

Biotechnol Biofuels. 2018 Sep 24;11:259. doi: 10.1186/s13068-018-1266-x. eCollection 2018.

2.

Random sorting of Campylobacter jejuni phase variants due to a narrow bottleneck during colonization of broiler chickens.

Wanford JJ, Lango-Scholey L, Nothaft H, Hu Y, Szymanski CM, Bayliss CD.

Microbiology. 2018 Jun;164(6):896-907. doi: 10.1099/mic.0.000669.

3.

Co-administration of the Campylobacter jejuni N-glycan based vaccine with probiotics improves vaccine performance in broiler chickens.

Nothaft H, Perez-Muñoz ME, Gouveia GJ, Duar RM, Wanford JJ, Lango-Scholey L, Panagos CG, Srithayakumar V, Plastow GS, Coros C, Bayliss CD, Edison AS, Walter J, Szymanski CM.

Appl Environ Microbiol. 2017 Sep 22. pii: AEM.01523-17. doi: 10.1128/AEM.01523-17. [Epub ahead of print]

4.

A conserved DGGK motif is essential for the function of the PglB oligosaccharyltransferase from Campylobacter jejuni.

Barre Y, Nothaft H, Thomas C, Liu X, Li J, Ng KKS, Szymanski CM.

Glycobiology. 2017 Oct 1;27(10):978-989. doi: 10.1093/glycob/cwx067.

PMID:
28922740
5.

Engineering the Campylobacter jejuni N-glycan to create an effective chicken vaccine.

Nothaft H, Davis B, Lock YY, Perez-Munoz ME, Vinogradov E, Walter J, Coros C, Szymanski CM.

Sci Rep. 2016 May 25;6:26511. doi: 10.1038/srep26511.

6.

L-fucose influences chemotaxis and biofilm formation in Campylobacter jejuni.

Dwivedi R, Nothaft H, Garber J, Xin Kin L, Stahl M, Flint A, van Vliet AH, Stintzi A, Szymanski CM.

Mol Microbiol. 2016 Aug;101(4):575-89. doi: 10.1111/mmi.13409. Epub 2016 Jun 10.

7.

Glycoengineered Outer Membrane Vesicles: A Novel Platform for Bacterial Vaccines.

Price NL, Goyette-Desjardins G, Nothaft H, Valguarnera E, Szymanski CM, Segura M, Feldman MF.

Sci Rep. 2016 Apr 22;6:24931. doi: 10.1038/srep24931.

8.

Generation of free oligosaccharides from bacterial protein N-linked glycosylation systems.

Dwivedi R, Nothaft H, Reiz B, Whittal RM, Szymanski CM.

Biopolymers. 2013 Oct;99(10):772-83. doi: 10.1002/bip.22296.

PMID:
23749285
9.

N-glycosylation of Campylobacter jejuni surface proteins promotes bacterial fitness.

Alemka A, Nothaft H, Zheng J, Szymanski CM.

Infect Immun. 2013 May;81(5):1674-82. doi: 10.1128/IAI.01370-12. Epub 2013 Mar 4.

10.

Bacterial protein N-glycosylation: new perspectives and applications.

Nothaft H, Szymanski CM.

J Biol Chem. 2013 Mar 8;288(10):6912-20. doi: 10.1074/jbc.R112.417857. Epub 2013 Jan 17. Review.

11.

Diversity in the protein N-glycosylation pathways within the Campylobacter genus.

Nothaft H, Scott NE, Vinogradov E, Liu X, Hu R, Beadle B, Fodor C, Miller WG, Li J, Cordwell SJ, Szymanski CM.

Mol Cell Proteomics. 2012 Nov;11(11):1203-19. doi: 10.1074/mcp.M112.021519. Epub 2012 Aug 2.

12.

Modification of the Campylobacter jejuni N-linked glycan by EptC protein-mediated addition of phosphoethanolamine.

Scott NE, Nothaft H, Edwards AV, Labbate M, Djordjevic SP, Larsen MR, Szymanski CM, Cordwell SJ.

J Biol Chem. 2012 Aug 24;287(35):29384-96. doi: 10.1074/jbc.M112.380212. Epub 2012 Jul 2.

13.

L-fucose utilization provides Campylobacter jejuni with a competitive advantage.

Stahl M, Friis LM, Nothaft H, Liu X, Li J, Szymanski CM, Stintzi A.

Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7194-9. doi: 10.1073/pnas.1014125108. Epub 2011 Apr 11.

14.

Campylobacter jejuni free oligosaccharides: function and fate.

Nothaft H, Liu X, Li J, Szymanski CM.

Virulence. 2010 Nov-Dec;1(6):546-50. Epub 2010 Nov 1.

PMID:
21178500
15.

Protein glycosylation in bacteria: sweeter than ever.

Nothaft H, Szymanski CM.

Nat Rev Microbiol. 2010 Nov;8(11):765-78. doi: 10.1038/nrmicro2383. Review.

PMID:
20948550
16.

The Escherichia coli glycophage display system.

Dürr C, Nothaft H, Lizak C, Glockshuber R, Aebi M.

Glycobiology. 2010 Nov;20(11):1366-72. doi: 10.1093/glycob/cwq102. Epub 2010 Jun 25.

PMID:
20581006
17.

The permease gene nagE2 is the key to N-acetylglucosamine sensing and utilization in Streptomyces coelicolor and is subject to multi-level control.

Nothaft H, Rigali S, Boomsma B, Swiatek M, McDowall KJ, van Wezel GP, Titgemeyer F.

Mol Microbiol. 2010 Mar;75(5):1133-44. doi: 10.1111/j.1365-2958.2009.07020.x.

18.

Characterization of a bifunctional pyranose-furanose mutase from Campylobacter jejuni 11168.

Poulin MB, Nothaft H, Hug I, Feldman MF, Szymanski CM, Lowary TL.

J Biol Chem. 2010 Jan 1;285(1):493-501. doi: 10.1074/jbc.M109.072157. Epub 2009 Nov 3.

19.

N-linked protein glycosylation in a bacterial system.

Nothaft H, Liu X, McNally DJ, Szymanski CM.

Methods Mol Biol. 2010;600:227-43. doi: 10.1007/978-1-60761-454-8_16.

PMID:
19882132
20.

Study of free oligosaccharides derived from the bacterial N-glycosylation pathway.

Nothaft H, Liu X, McNally DJ, Li J, Szymanski CM.

Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):15019-24. doi: 10.1073/pnas.0903078106. Epub 2009 Aug 14.

21.

Identification and quantification of glycoproteins using ion-pairing normal-phase liquid chromatography and mass spectrometry.

Ding W, Nothaft H, Szymanski CM, Kelly J.

Mol Cell Proteomics. 2009 Sep;8(9):2170-85. doi: 10.1074/mcp.M900088-MCP200. Epub 2009 Jun 12.

22.

Identification of novel carbohydrate modifications on Campylobacter jejuni 11168 flagellin using metabolomics-based approaches.

Logan SM, Hui JP, Vinogradov E, Aubry AJ, Melanson JE, Kelly JF, Nothaft H, Soo EC.

FEBS J. 2009 Feb;276(4):1014-23. doi: 10.1111/j.1742-4658.2008.06840.x. Epub 2009 Jan 12.

23.

The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor.

Colson S, van Wezel GP, Craig M, Noens EE, Nothaft H, Mommaas AM, Titgemeyer F, Joris B, Rigali S.

Microbiology. 2008 Feb;154(Pt 2):373-82. doi: 10.1099/mic.0.2007/011940-0.

24.

A new piece of an old jigsaw: glucose kinase is activated posttranslationally in a glucose transport-dependent manner in streptomyces coelicolor A3(2).

van Wezel GP, König M, Mahr K, Nothaft H, Thomae AW, Bibb M, Titgemeyer F.

J Mol Microbiol Biotechnol. 2007;12(1-2):67-74.

PMID:
17183213
25.

Phosphoinositides are involved in control of the glucose-dependent growth resumption that follows the transition phase in Streptomyces lividans.

Chouayekh H, Nothaft H, Delaunay S, Linder M, Payrastre B, Seghezzi N, Titgemeyer F, Virolle MJ.

J Bacteriol. 2007 Feb;189(3):741-9. Epub 2006 Nov 22.

26.

Mass spectrometry-based glycomics strategy for exploring N-linked glycosylation in eukaryotes and bacteria.

Liu X, McNally DJ, Nothaft H, Szymanski CM, Brisson JR, Li J.

Anal Chem. 2006 Sep 1;78(17):6081-7.

PMID:
16944887
27.

The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development.

Rigali S, Nothaft H, Noens EE, Schlicht M, Colson S, Müller M, Joris B, Koerten HK, Hopwood DA, Titgemeyer F, van Wezel GP.

Mol Microbiol. 2006 Sep;61(5):1237-51.

28.

Biophysical characterization of the enzyme I of the Streptomyces coelicolor phosphoenolpyruvate:sugar phosphotransferase system.

Hurtado-Gómez E, Fernández-Ballester G, Nothaft H, Gómez J, Titgemeyer F, Neira JL.

Biophys J. 2006 Jun 15;90(12):4592-604. Epub 2006 Mar 31.

29.

Crp of Streptomyces coelicolor is the third transcription factor of the large CRP-FNR superfamily able to bind cAMP.

Derouaux A, Dehareng D, Lecocq E, Halici S, Nothaft H, Giannotta F, Moutzourelis G, Dusart J, Devreese B, Titgemeyer F, Van Beeumen J, Rigali S.

Biochem Biophys Res Commun. 2004 Dec 17;325(3):983-90.

30.

Extending the classification of bacterial transcription factors beyond the helix-turn-helix motif as an alternative approach to discover new cis/trans relationships.

Rigali S, Schlicht M, Hoskisson P, Nothaft H, Merzbacher M, Joris B, Titgemeyer F.

Nucleic Acids Res. 2004 Jun 24;32(11):3418-26. Print 2004.

31.

Deletion of a cyclic AMP receptor protein homologue diminishes germination and affects morphological development of Streptomyces coelicolor.

Derouaux A, Halici S, Nothaft H, Neutelings T, Moutzourelis G, Dusart J, Titgemeyer F, Rigali S.

J Bacteriol. 2004 Mar;186(6):1893-7. Erratum in: J Bacteriol. 2004 May;186(10):3282.

32.

In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2).

Bertram R, Schlicht M, Mahr K, Nothaft H, Saier MH Jr, Titgemeyer F.

J Bacteriol. 2004 Mar;186(5):1362-73.

33.

The phosphotransferase system of Streptomyces coelicolor is biased for N-acetylglucosamine metabolism.

Nothaft H, Dresel D, Willimek A, Mahr K, Niederweis M, Titgemeyer F.

J Bacteriol. 2003 Dec;185(23):7019-23.

34.
35.

The phosphotransferase system of Streptomyces coelicolor.

Kamionka A, Parche S, Nothaft H, Siepelmeyer J, Jahreis K, Titgemeyer F.

Eur J Biochem. 2002 Apr;269(8):2143-50.

36.

Sugar uptake and utilisation in Streptomyces coelicolor: a PTS view to the genome.

Parche S, Nothaft H, Kamionka A, Titgemeyer F.

Antonie Van Leeuwenhoek. 2000 Dec;78(3-4):243-51.

PMID:
11386346

Supplemental Content

Loading ...
Support Center