Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 52

1.

Systematic metabolic pathway modification to boost L-ornithine supply for bacitracin production in Bacillus licheniformis DW2.

Yu W, Li D, Jia S, Liu Z, Nomura CT, Li J, Chen S, Wang Q.

Appl Microbiol Biotechnol. 2019 Oct;103(20):8383-8392. doi: 10.1007/s00253-019-10107-7. Epub 2019 Sep 7.

PMID:
31494703
2.
3.

Low Carbon Concentration Feeding Improves Medium-Chain-Length Polyhydroxyalkanoate Production in Escherichia coli Strains With Defective β-Oxidation.

Mohd Fadzil FI, Mizuno S, Hiroe A, Nomura CT, Tsuge T.

Front Bioeng Biotechnol. 2018 Nov 30;6:178. doi: 10.3389/fbioe.2018.00178. eCollection 2018.

4.

SfnR2 Regulates Dimethyl Sulfide-Related Utilization in Pseudomonas aeruginosa PAO1.

Lundgren BR, Sarwar Z, Feldman KS, Shoytush JM, Nomura CT.

J Bacteriol. 2019 Jan 28;201(4). pii: e00606-18. doi: 10.1128/JB.00606-18. Print 2019 Feb 15.

5.

Increased synthesis of poly(3-hydroxydodecanoate) by random mutagenesis of polyhydroxyalkanoate synthase.

Hiroe A, Watanabe S, Kobayashi M, Nomura CT, Tsuge T.

Appl Microbiol Biotechnol. 2018 Sep;102(18):7927-7934. doi: 10.1007/s00253-018-9230-z. Epub 2018 Jul 21.

PMID:
30032431
6.

Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis.

Cai D, Chen Y, He P, Wang S, Mo F, Li X, Wang Q, Nomura CT, Wen Z, Ma X, Chen S.

Biotechnol Bioeng. 2018 Oct;115(10):2541-2553. doi: 10.1002/bit.26774. Epub 2018 Jul 20.

PMID:
29940069
7.

Increased flux through the TCA cycle enhances bacitracin production by Bacillus licheniformis DW2.

Liu Z, Yu W, Nomura CT, Li J, Chen S, Yang Y, Wang Q.

Appl Microbiol Biotechnol. 2018 Aug;102(16):6935-6946. doi: 10.1007/s00253-018-9133-z. Epub 2018 Jun 18.

PMID:
29911294
8.

Acetolactate synthase (AlsS) in Bacillus licheniformis WX-02: enzymatic properties and efficient functions for acetoin/butanediol and L-valine biosynthesis.

Huo Y, Zhan Y, Wang Q, Li S, Yang S, Nomura CT, Wang C, Chen S.

Bioprocess Biosyst Eng. 2018 Jan;41(1):87-96. doi: 10.1007/s00449-017-1847-2. Epub 2017 Oct 11.

PMID:
29026998
9.

Targeting the alternative sigma factor RpoN to combat virulence in Pseudomonas aeruginosa.

Lloyd MG, Lundgren BR, Hall CW, Gagnon LB, Mah TF, Moffat JF, Nomura CT.

Sci Rep. 2017 Oct 3;7(1):12615. doi: 10.1038/s41598-017-12667-y.

10.

Optimization of Inexpensive Agricultural By-Products as Raw Materials for Bacitracin Production in Bacillus licheniformis DW2.

Wang Q, Zheng H, Wan X, Huang H, Li J, Nomura CT, Wang C, Chen S.

Appl Biochem Biotechnol. 2017 Dec;183(4):1146-1157. doi: 10.1007/s12010-017-2489-1. Epub 2017 Jun 7.

PMID:
28593603
11.

A novel strategy to improve protein secretion via overexpression of the SppA signal peptide peptidase in Bacillus licheniformis.

Cai D, Wang H, He P, Zhu C, Wang Q, Wei X, Nomura CT, Chen S.

Microb Cell Fact. 2017 Apr 24;16(1):70. doi: 10.1186/s12934-017-0688-7.

12.

Untangling the transcription regulatory network of the bacitracin synthase operon in Bacillus licheniformis DW2.

Wang D, Wang Q, Qiu Y, Nomura CT, Li J, Chen S.

Res Microbiol. 2017 Jul - Aug;168(6):515-523. doi: 10.1016/j.resmic.2017.02.010. Epub 2017 Mar 7.

PMID:
28279714
13.

Effect of acetate as a co-feedstock on the production of poly(lactate-co-3-hydroxyalkanoate) by pflA-deficient Escherichia coli RSC10.

Salamanca-Cardona L, Scheel RA, Mizuno K, Bergey NS, Stipanovic AJ, Matsumoto K, Taguchi S, Nomura CT.

J Biosci Bioeng. 2017 May;123(5):547-554. doi: 10.1016/j.jbiosc.2016.12.019. Epub 2017 Feb 23.

PMID:
28237496
14.

DdaR (PA1196) Regulates Expression of Dimethylarginine Dimethylaminohydrolase for the Metabolism of Methylarginines in Pseudomonas aeruginosa PAO1.

Lundgren BR, Bailey FJ, Moley G, Nomura CT.

J Bacteriol. 2017 Mar 28;199(8). pii: e00001-17. doi: 10.1128/JB.00001-17. Print 2017 Apr 15.

15.

Enhancing poly(3-hydroxyalkanoate) production in Escherichia coli by the removal of the regulatory gene arcA.

Scheel RA, Ji L, Lundgren BR, Nomura CT.

AMB Express. 2016 Dec;6(1):120. doi: 10.1186/s13568-016-0291-z. Epub 2016 Nov 23.

16.

Use of Bacillus amyloliquefaciens HZ-12 for High-Level Production of the Blood Glucose Lowering Compound, 1-Deoxynojirimycin (DNJ), and Nutraceutical Enriched Soybeans via Fermentation.

Cai D, Liu M, Wei X, Li X, Wang Q, Nomura CT, Chen S.

Appl Biochem Biotechnol. 2017 Mar;181(3):1108-1122. doi: 10.1007/s12010-016-2272-8. Epub 2016 Oct 24.

PMID:
27826807
17.

Cloning and heterologous expression of a novel subgroup of class IV polyhydroxyalkanoate synthase genes from the genus Bacillus.

Mizuno K, Kihara T, Tsuge T, Lundgren BR, Sarwar Z, Pinto A, Nomura CT.

Biosci Biotechnol Biochem. 2017 Jan;81(1):194-196. Epub 2016 Sep 9.

PMID:
27609142
18.

A rapid and efficient electroporation method for transformation of Halomonas sp. O-1.

Harris JR, Lundgren BR, Grzeskowiak BR, Mizuno K, Nomura CT.

J Microbiol Methods. 2016 Oct;129:127-132. doi: 10.1016/j.mimet.2016.08.009. Epub 2016 Aug 16.

PMID:
27542998
19.

Erratum for Sarwar et al., GcsR, a TyrR-Like Enhancer-Binding Protein, Regulates Expression of the Glycine Cleavage System in Pseudomonas aeruginosa PAO1.

Sarwar Z, Lundgren BR, Grassa MT, Wang MX, Gribble M, Moffat JF, Nomura CT.

mSphere. 2016 Jul 27;1(4). pii: e00200-16. doi: 10.1128/mSphere.00200-16. eCollection 2016 Jul-Aug.

20.

Ethanolamine Catabolism in Pseudomonas aeruginosa PAO1 Is Regulated by the Enhancer-Binding Protein EatR (PA4021) and the Alternative Sigma Factor RpoN.

Lundgren BR, Sarwar Z, Pinto A, Ganley JG, Nomura CT.

J Bacteriol. 2016 Aug 11;198(17):2318-29. doi: 10.1128/JB.00357-16. Print 2016 Sep 1.

21.

GcsR, a TyrR-Like Enhancer-Binding Protein, Regulates Expression of the Glycine Cleavage System in Pseudomonas aeruginosa PAO1.

Sarwar Z, Lundgren BR, Grassa MT, Wang MX, Gribble M, Moffat JF, Nomura CT.

mSphere. 2016 Apr 27;1(2). pii: e00020-16. doi: 10.1128/mSphere.00020-16. eCollection 2016 Mar-Apr. Erratum in: mSphere. 2016 Jul-Aug;1(4). pii: e00200-16. doi: 10.1128/mSphere.00200-16.

22.

Engineering Bacillus licheniformis for the production of meso-2,3-butanediol.

Qiu Y, Zhang J, Li L, Wen Z, Nomura CT, Wu S, Chen S.

Biotechnol Biofuels. 2016 Jun 2;9:117. doi: 10.1186/s13068-016-0522-1. eCollection 2016.

23.

Consolidated bioprocessing of poly(lactate-co-3-hydroxybutyrate) from xylan as a sole feedstock by genetically-engineered Escherichia coli.

Salamanca-Cardona L, Scheel RA, Bergey NS, Stipanovic AJ, Matsumoto K, Taguchi S, Nomura CT.

J Biosci Bioeng. 2016 Oct;122(4):406-14. doi: 10.1016/j.jbiosc.2016.03.009. Epub 2016 Apr 8.

PMID:
27067372
24.

Defining the Metabolic Functions and Roles in Virulence of the rpoN1 and rpoN2 Genes in Ralstonia solanacearum GMI1000.

Lundgren BR, Connolly MP, Choudhary P, Brookins-Little TS, Chatterjee S, Raina R, Nomura CT.

PLoS One. 2015 Dec 11;10(12):e0144852. doi: 10.1371/journal.pone.0144852. eCollection 2015.

25.

Use of thiol-ene click chemistry to modify mechanical and thermal properties of polyhydroxyalkanoates (PHAs).

Levine AC, Heberlig GW, Nomura CT.

Int J Biol Macromol. 2016 Feb;83:358-65. doi: 10.1016/j.ijbiomac.2015.11.048. Epub 2015 Nov 23.

PMID:
26616449
26.

The metabolism of (R)-3-hydroxybutyrate is regulated by the enhancer-binding protein PA2005 and the alternative sigma factor RpoN in Pseudomonas aeruginosa PAO1.

Lundgren BR, Harris JR, Sarwar Z, Scheel RA, Nomura CT.

Microbiology. 2015 Nov;161(Pt 11):2232-42. doi: 10.1099/mic.0.000163. Epub 2015 Aug 25.

27.

Methanol-induced chain termination in poly(3-hydroxybutyrate) biopolymers: molecular weight control.

Ashby RD, Solaiman DK, Strahan GD, Levine AC, Nomura CT.

Int J Biol Macromol. 2015 Mar;74:195-201. doi: 10.1016/j.ijbiomac.2014.12.026. Epub 2014 Dec 24.

PMID:
25542165
28.

Deletion of the pflA gene in Escherichia coli LS5218 and its effects on the production of polyhydroxyalkanoates using beechwood xylan as a feedstock.

Salamanca-Cardona L, Scheel RA, Lundgren BR, Stipanovic AJ, Matsumoto K, Taguchi S, Nomura CT.

Bioengineered. 2014 Sep-Oct;5(5):284-7. doi: 10.4161/bioe.29595.

29.

Genetic analysis of the assimilation of C5-dicarboxylic acids in Pseudomonas aeruginosa PAO1.

Lundgren BR, Villegas-Peñaranda LR, Harris JR, Mottern AM, Dunn DM, Boddy CN, Nomura CT.

J Bacteriol. 2014 Jul;196(14):2543-51. doi: 10.1128/JB.01615-14. Epub 2014 May 2.

30.

Enhanced production of polyhydroxyalkanoates (PHAs) from beechwood xylan by recombinant Escherichia coli.

Salamanca-Cardona L, Ashe CS, Stipanovic AJ, Nomura CT.

Appl Microbiol Biotechnol. 2014 Jan;98(2):831-42. doi: 10.1007/s00253-013-5398-4. Epub 2013 Nov 28.

PMID:
24287934
31.

Gene PA2449 is essential for glycine metabolism and pyocyanin biosynthesis in Pseudomonas aeruginosa PAO1.

Lundgren BR, Thornton W, Dornan MH, Villegas-Peñaranda LR, Boddy CN, Nomura CT.

J Bacteriol. 2013 May;195(9):2087-100. doi: 10.1128/JB.02205-12. Epub 2013 Mar 1.

32.

Estimation of inhibitory effects of hemicellulosic wood hydrolysate inhibitors on PHA production by Burkholderia cepacia ATCC 17759 using response surface methodology.

Pan W, Nomura CT, Nakas JP.

Bioresour Technol. 2012 Dec;125:275-82. doi: 10.1016/j.biortech.2012.08.107. Epub 2012 Aug 31.

PMID:
23037882
33.

Biosynthesis of poly[(R)-3-hydroxyalkanoate] copolymers with controlled repeating unit compositions and physical properties.

Tappel RC, Kucharski JM, Mastroianni JM, Stipanovic AJ, Nomura CT.

Biomacromolecules. 2012 Sep 10;13(9):2964-72. doi: 10.1021/bm301043t. Epub 2012 Aug 17.

PMID:
22873826
34.

Glycerine and levulinic acid: renewable co-substrates for the fermentative synthesis of short-chain poly(hydroxyalkanoate) biopolymers.

Ashby RD, Solaiman DK, Strahan GD, Zhu C, Tappel RC, Nomura CT.

Bioresour Technol. 2012 Aug;118:272-80. doi: 10.1016/j.biortech.2012.05.092. Epub 2012 May 26.

PMID:
22705534
35.

Rearrangement of gene order in the phaCAB operon leads to effective production of ultrahigh-molecular-weight poly[(R)-3-hydroxybutyrate] in genetically engineered Escherichia coli.

Hiroe A, Tsuge K, Nomura CT, Itaya M, Tsuge T.

Appl Environ Microbiol. 2012 May;78(9):3177-84. doi: 10.1128/AEM.07715-11. Epub 2012 Feb 17.

36.

Precise control of repeating unit composition in biodegradable poly(3-hydroxyalkanoate) polymers synthesized by Escherichia coli.

Tappel RC, Wang Q, Nomura CT.

J Biosci Bioeng. 2012 Apr;113(4):480-6. doi: 10.1016/j.jbiosc.2011.12.004. Epub 2012 Jan 16.

PMID:
22248859
37.

Mutations to the active site of 3-ketoacyl-ACP synthase III (FabH) increase polyhydroxyalkanoate biosynthesis in transgenic Escherichia coli.

Mueller AP, Nomura CT.

J Biosci Bioeng. 2012 Mar;113(3):300-6. doi: 10.1016/j.jbiosc.2011.10.022. Epub 2011 Dec 3.

PMID:
22143070
38.

Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks.

Wang Q, Tappel RC, Zhu C, Nomura CT.

Appl Environ Microbiol. 2012 Jan;78(2):519-27. doi: 10.1128/AEM.07020-11. Epub 2011 Nov 18.

39.

Production of polyhydroxyalkanoates by Burkholderia cepacia ATCC 17759 using a detoxified sugar maple hemicellulosic hydrolysate.

Pan W, Perrotta JA, Stipanovic AJ, Nomura CT, Nakas JP.

J Ind Microbiol Biotechnol. 2012 Mar;39(3):459-69. doi: 10.1007/s10295-011-1040-6. Epub 2011 Sep 28.

PMID:
21953365
40.
41.

Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759.

Zhu C, Nomura CT, Perrotta JA, Stipanovic AJ, Nakas JP.

Biotechnol Prog. 2010 Mar-Apr;26(2):424-30. doi: 10.1002/btpr.355.

PMID:
19953601
42.

Production of short-chain-length/medium-chain-length polyhydroxyalkanoate (PHA) copolymer in the plastid of Arabidopsis thaliana using an engineered 3-ketoacyl-acyl carrier protein synthase III.

Matsumoto K, Murata T, Nagao R, Nomura CT, Arai S, Arai Y, Takase K, Nakashita H, Taguchi S, Shimada H.

Biomacromolecules. 2009 Apr 13;10(4):686-90. doi: 10.1021/bm8013878.

PMID:
19265441
43.

Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors.

Lee WH, Loo CY, Nomura CT, Sudesh K.

Bioresour Technol. 2008 Oct;99(15):6844-51. doi: 10.1016/j.biortech.2008.01.051. Epub 2008 Mar 5.

PMID:
18325764
44.

FabG mediates polyhydroxyalkanoate production from both related and nonrelated carbon sources in recombinant Escherichia coli LS5218.

Nomura CT, Tanaka T, Eguen TE, Appah AS, Matsumoto K, Taguchi S, Ortiz CL, Doi Y.

Biotechnol Prog. 2008 Mar-Apr;24(2):342-51. doi: 10.1021/bp070303y. Epub 2008 Jan 24.

PMID:
18215055
45.

Poly[(R)-3-hydroxybutyrate] formation in Escherichia coli from glucose through an enoyl-CoA hydratase-mediated pathway.

Sato S, Nomura CT, Abe H, Doi Y, Tsuge T.

J Biosci Bioeng. 2007 Jan;103(1):38-44.

PMID:
17298899
46.

PHA synthase engineering toward superbiocatalysts for custom-made biopolymers.

Nomura CT, Taguchi S.

Appl Microbiol Biotechnol. 2007 Jan;73(5):969-79. Epub 2006 Nov 23. Review.

PMID:
17123079
47.

Roles for heme-copper oxidases in extreme high-light and oxidative stress response in the cyanobacterium Synechococcus sp. PCC 7002.

Nomura CT, Sakamoto T, Bryant DA.

Arch Microbiol. 2006 Jun;185(6):471-9. Epub 2006 Apr 27.

PMID:
16775753
48.

Characterization of two cytochrome oxidase operons in the marine cyanobacterium Synechococcus sp. PCC 7002: inactivation of ctaDI affects the PS I:PS II ratio.

Nomura CT, Persson S, Shen G, Inoue-Sakamoto K, Bryant DA.

Photosynth Res. 2006 Feb;87(2):215-28. Epub 2006 Jan 21.

PMID:
16437183
49.

Supplemental Content

Loading ...
Support Center