Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 26

1.

Control of memory CD8+ T cell longevity and effector functions by IL-15.

Nolz JC, Richer MJ.

Mol Immunol. 2019 Dec 6;117:180-188. doi: 10.1016/j.molimm.2019.11.011. [Epub ahead of print] Review.

PMID:
31816491
2.

Targeted Expansion of Tissue-Resident CD8+ T Cells to Boost Cellular Immunity in the Skin.

Hobbs SJ, Nolz JC.

Cell Rep. 2019 Dec 3;29(10):2990-2997.e2. doi: 10.1016/j.celrep.2019.10.126.

3.

Central memory CD8+ T cells become CD69+ tissue-residents during viral skin infection independent of CD62L-mediated lymph node surveillance.

Osborn JF, Hobbs SJ, Mooster JL, Khan TN, Kilgore AM, Harbour JC, Nolz JC.

PLoS Pathog. 2019 Mar 15;15(3):e1007633. doi: 10.1371/journal.ppat.1007633. eCollection 2019 Mar.

4.

Activation and trafficking of CD8+ T cells during viral skin infection: immunological lessons learned from vaccinia virus.

Hobbs SJ, Osborn JF, Nolz JC.

Curr Opin Virol. 2018 Feb;28:12-19. doi: 10.1016/j.coviro.2017.10.001. Epub 2017 Oct 25. Review.

5.

Enzymatic synthesis of core 2 O-glycans governs the tissue-trafficking potential of memory CD8+ T cells.

Osborn JF, Mooster JL, Hobbs SJ, Munks MW, Barry C, Harty JT, Hill AB, Nolz JC.

Sci Immunol. 2017 Oct 13;2(16). pii: eaan6049. doi: 10.1126/sciimmunol.aan6049.

6.

Lymphatic Vessels Balance Viral Dissemination and Immune Activation following Cutaneous Viral Infection.

Loo CP, Nelson NA, Lane RS, Booth JL, Loprinzi Hardin SC, Thomas A, Slifka MK, Nolz JC, Lund AW.

Cell Rep. 2017 Sep 26;20(13):3176-3187. doi: 10.1016/j.celrep.2017.09.006.

7.

Regulation of T Cell Trafficking by Enzymatic Synthesis of O-Glycans.

Hobbs SJ, Nolz JC.

Front Immunol. 2017 May 24;8:600. doi: 10.3389/fimmu.2017.00600. eCollection 2017. Review.

8.

Local antigen in nonlymphoid tissue promotes resident memory CD8+ T cell formation during viral infection.

Khan TN, Mooster JL, Kilgore AM, Osborn JF, Nolz JC.

J Exp Med. 2016 May 30;213(6):951-66. doi: 10.1084/jem.20151855. Epub 2016 May 23.

9.

Strength in Numbers: Visualizing CTL-Mediated Killing In Vivo.

Nolz JC, Hill AB.

Immunity. 2016 Feb 16;44(2):207-8. doi: 10.1016/j.immuni.2016.01.026.

10.

Molecular mechanisms of CD8(+) T cell trafficking and localization.

Nolz JC.

Cell Mol Life Sci. 2015 Jul;72(13):2461-73. doi: 10.1007/s00018-015-1835-0. Epub 2015 Jan 11. Review.

11.

IL-15 regulates memory CD8+ T cell O-glycan synthesis and affects trafficking.

Nolz JC, Harty JT.

J Clin Invest. 2014 Mar;124(3):1013-26. doi: 10.1172/JCI72039. Epub 2014 Feb 10.

12.

One bug or another: promiscuous T cells form lifelong memory.

Nolz JC, Harty JT.

Immunity. 2013 Feb 21;38(2):207-8. doi: 10.1016/j.immuni.2013.02.002.

13.

Pathogen-specific inflammatory milieux tune the antigen sensitivity of CD8(+) T cells by enhancing T cell receptor signaling.

Richer MJ, Nolz JC, Harty JT.

Immunity. 2013 Jan 24;38(1):140-52. doi: 10.1016/j.immuni.2012.09.017. Epub 2012 Dec 20.

14.

Division-linked generation of death-intermediates regulates the numerical stability of memory CD8 T cells.

Nolz JC, Rai D, Badovinac VP, Harty JT.

Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6199-204. doi: 10.1073/pnas.1118868109. Epub 2012 Apr 2.

15.

Naive, effector and memory CD8 T-cell trafficking: parallels and distinctions.

Nolz JC, Starbeck-Miller GR, Harty JT.

Immunotherapy. 2011 Oct;3(10):1223-33. doi: 10.2217/imt.11.100. Review.

16.

Strategies and implications for prime-boost vaccination to generate memory CD8 T cells.

Nolz JC, Harty JT.

Adv Exp Med Biol. 2011;780:69-83. doi: 10.1007/978-1-4419-5632-3_7. Review.

PMID:
21842366
17.

Protective capacity of memory CD8+ T cells is dictated by antigen exposure history and nature of the infection.

Nolz JC, Harty JT.

Immunity. 2011 May 27;34(5):781-93. doi: 10.1016/j.immuni.2011.03.020. Epub 2011 May 5.

18.

Immunologic considerations for generating memory CD8 T cells through vaccination.

Butler NS, Nolz JC, Harty JT.

Cell Microbiol. 2011 Jul;13(7):925-33. doi: 10.1111/j.1462-5822.2011.01594.x. Epub 2011 Apr 28. Review.

19.

The WAVE2 complex regulates T cell receptor signaling to integrins via Abl- and CrkL-C3G-mediated activation of Rap1.

Nolz JC, Nacusi LP, Segovis CM, Medeiros RB, Mitchell JS, Shimizu Y, Billadeau DD.

J Cell Biol. 2008 Sep 22;182(6):1231-44. doi: 10.1083/jcb.200801121.

20.
21.

WAVE2 regulates high-affinity integrin binding by recruiting vinculin and talin to the immunological synapse.

Nolz JC, Medeiros RB, Mitchell JS, Zhu P, Freedman BD, Shimizu Y, Billadeau DD.

Mol Cell Biol. 2007 Sep;27(17):5986-6000. Epub 2007 Jun 25.

22.

Regulation of T-cell activation by the cytoskeleton.

Billadeau DD, Nolz JC, Gomez TS.

Nat Rev Immunol. 2007 Feb;7(2):131-43. Review.

PMID:
17259969
23.

HS1 functions as an essential actin-regulatory adaptor protein at the immune synapse.

Gomez TS, McCarney SD, Carrizosa E, Labno CM, Comiskey EO, Nolz JC, Zhu P, Freedman BD, Clark MR, Rawlings DJ, Billadeau DD, Burkhardt JK.

Immunity. 2006 Jun;24(6):741-52.

24.

The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation.

Nolz JC, Gomez TS, Zhu P, Li S, Medeiros RB, Shimizu Y, Burkhardt JK, Freedman BD, Billadeau DD.

Curr Biol. 2006 Jan 10;16(1):24-34.

25.

The Ezh2 methyltransferase complex: actin up in the cytosol.

Nolz JC, Gomez TS, Billadeau DD.

Trends Cell Biol. 2005 Oct;15(10):514-7. Epub 2005 Aug 26.

PMID:
16126384
26.

ZAP-70 is expressed by a subset of normal human B-lymphocytes displaying an activated phenotype.

Nolz JC, Tschumper RC, Pittner BT, Darce JR, Kay NE, Jelinek DF.

Leukemia. 2005 Jun;19(6):1018-24.

PMID:
15800671

Supplemental Content

Support Center