Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 52

1.

Synthesis and Self-Assembly of Cellulose Microfibrils from Reconstituted Cellulose Synthase.

Cho SH, Purushotham P, Fang C, Maranas C, Díaz-Moreno SM, Bulone V, Zimmer J, Kumar M, Nixon BT.

Plant Physiol. 2017 Sep;175(1):146-156. doi: 10.1104/pp.17.00619. Epub 2017 Aug 2.

2.

A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose microfibril formation in vitro.

Purushotham P, Cho SH, Díaz-Moreno SM, Kumar M, Nixon BT, Bulone V, Zimmer J.

Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11360-11365. Epub 2016 Sep 19.

3.

Comparative Structural and Computational Analysis Supports Eighteen Cellulose Synthases in the Plant Cellulose Synthesis Complex.

Nixon BT, Mansouri K, Singh A, Du J, Davis JK, Lee JG, Slabaugh E, Vandavasi VG, O'Neill H, Roberts EM, Roberts AW, Yingling YG, Haigler CH.

Sci Rep. 2016 Jun 27;6:28696. doi: 10.1038/srep28696.

4.

Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution.

Du J, Vepachedu V, Cho SH, Kumar M, Nixon BT.

PLoS One. 2016 May 23;11(5):e0155886. doi: 10.1371/journal.pone.0155886. eCollection 2016.

5.

A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers.

Vandavasi VG, Putnam DK, Zhang Q, Petridis L, Heller WT, Nixon BT, Haigler CH, Kalluri U, Coates L, Langan P, Smith JC, Meiler J, O'Neill H.

Plant Physiol. 2016 Jan;170(1):123-35. doi: 10.1104/pp.15.01356. Epub 2015 Nov 10.

6.

In vitro synthesis of cellulose microfibrils by a membrane protein from protoplasts of the non-vascular plant Physcomitrella patens.

Cho SH, Du J, Sines I, Poosarla VG, Vepachedu V, Kafle K, Park YB, Kim SH, Kumar M, Nixon BT.

Biochem J. 2015 Sep 1;470(2):195-205. doi: 10.1042/BJ20141391. Epub 2015 Jun 30.

PMID:
26348908
7.

Advancing Rhodobacter sphaeroides as a platform for expression of functional membrane proteins.

Erbakan M, Curtis BS, Nixon BT, Kumar M, Curtis WR.

Protein Expr Purif. 2015 Nov;115:109-17. doi: 10.1016/j.pep.2015.05.012. Epub 2015 May 22.

PMID:
26008117
8.

Breaking symmetry in multimeric ATPase motors.

Sysoeva TA, Chowdhury S, Nixon BT.

Cell Cycle. 2014;13(10):1509-10. doi: 10.4161/cc.28957. Epub 2014 Apr 22. No abstract available.

9.

Crystallization and preliminary X-ray analysis of the ATPase domain of the σ(54)-dependent transcription activator NtrC1 from Aquifex aeolicus bound to the ATP analog ADP-BeFx.

Sysoeva TA, Yennawar N, Allaire M, Nixon BT.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Dec;69(Pt 12):1384-8. doi: 10.1107/S174430911302976X. Epub 2013 Nov 29.

10.

Nucleotide-induced asymmetry within ATPase activator ring drives σ54-RNAP interaction and ATP hydrolysis.

Sysoeva TA, Chowdhury S, Guo L, Nixon BT.

Genes Dev. 2013 Nov 15;27(22):2500-11. doi: 10.1101/gad.229385.113.

11.

Opening and closing of the bacterial RNA polymerase clamp.

Chakraborty A, Wang D, Ebright YW, Korlann Y, Kortkhonjia E, Kim T, Chowdhury S, Wigneshweraraj S, Irschik H, Jansen R, Nixon BT, Knight J, Weiss S, Ebright RH.

Science. 2012 Aug 3;337(6094):591-5. doi: 10.1126/science.1218716.

12.

Phase transitions in the assembly of multivalent signalling proteins.

Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang QX, Nixon BT, Rosen MK.

Nature. 2012 Mar 7;483(7389):336-40. doi: 10.1038/nature10879.

13.

Engagement of arginine finger to ATP triggers large conformational changes in NtrC1 AAA+ ATPase for remodeling bacterial RNA polymerase.

Chen B, Sysoeva TA, Chowdhury S, Guo L, De Carlo S, Hanson JA, Yang H, Nixon BT.

Structure. 2010 Nov 10;18(11):1420-30. doi: 10.1016/j.str.2010.08.018.

14.

Comparative analysis of activator-Esigma54 complexes formed with nucleotide-metal fluoride analogues.

Burrows PC, Joly N, Nixon BT, Buck M.

Nucleic Acids Res. 2009 Aug;37(15):5138-50. doi: 10.1093/nar/gkp541. Epub 2009 Jun 24.

15.

Functional roles of the pre-sensor I insertion sequence in an AAA+ bacterial enhancer binding protein.

Burrows PC, Schumacher J, Amartey S, Ghosh T, Burgis TA, Zhang X, Nixon BT, Buck M.

Mol Microbiol. 2009 Aug;73(4):519-33. doi: 10.1111/j.1365-2958.2009.06744.x. Epub 2009 May 25.

16.

Coupling sigma factor conformation to RNA polymerase reorganisation for DNA melting.

Burrows PC, Joly N, Cannon WV, Cámara BP, Rappas M, Zhang X, Dawes K, Nixon BT, Wigneshweraraj SR, Buck M.

J Mol Biol. 2009 Mar 27;387(2):306-19. doi: 10.1016/j.jmb.2009.01.052. Epub 2009 Jan 31.

17.

ADPase activity of recombinantly expressed thermotolerant ATPases may be caused by copurification of adenylate kinase of Escherichia coli.

Chen B, Sysoeva TA, Chowdhury S, Guo L, Nixon BT.

FEBS J. 2009 Feb;276(3):807-15. doi: 10.1111/j.1742-4658.2008.06825.x.

18.

Preparation of templates for DNA sequencing.

Slatko BE, Heinrich P, Nixon BT, Eckert RL.

Curr Protoc Mol Biol. 2001 May;Chapter 7:Unit7.3. doi: 10.1002/0471142727.mb0703s21.

PMID:
18265266
19.

Constructing nested deletions for use in DNA sequencing.

Slatko B, Heinrich P, Nixon BT, Voytas D.

Curr Protoc Mol Biol. 2001 May;Chapter 7:Unit7.2. doi: 10.1002/0471142727.mb0702s16.

PMID:
18265265
20.

Regulation and action of the bacterial enhancer-binding protein AAA+ domains.

Chen B, Sysoeva TA, Chowdhury S, Nixon BT.

Biochem Soc Trans. 2008 Feb;36(Pt 1):89-93. doi: 10.1042/BST0360089.

21.

Structural basis of DNA recognition by the alternative sigma-factor, sigma54.

Doucleff M, Pelton JG, Lee PS, Nixon BT, Wemmer DE.

J Mol Biol. 2007 Jun 15;369(4):1070-8. Epub 2007 Apr 12.

22.

ATP ground- and transition states of bacterial enhancer binding AAA+ ATPases support complex formation with their target protein, sigma54.

Chen B, Doucleff M, Wemmer DE, De Carlo S, Huang HH, Nogales E, Hoover TR, Kondrashkina E, Guo L, Nixon BT.

Structure. 2007 Apr;15(4):429-40.

23.

The structural basis for regulated assembly and function of the transcriptional activator NtrC.

De Carlo S, Chen B, Hoover TR, Kondrashkina E, Nogales E, Nixon BT.

Genes Dev. 2006 Jun 1;20(11):1485-95.

24.

SAS solution structures of the apo and Mg2+/BeF3(-)-bound receiver domain of DctD from Sinorhizobium meliloti.

Nixon BT, Yennawar HP, Doucleff M, Pelton JG, Wemmer DE, Krueger S, Kondrashkina E.

Biochemistry. 2005 Oct 25;44(42):13962-9.

PMID:
16229485
25.
27.
28.

Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains.

Lee SY, De La Torre A, Yan D, Kustu S, Nixon BT, Wemmer DE.

Genes Dev. 2003 Oct 15;17(20):2552-63.

29.

Nucleotide-dependent conformational changes in the sigma54-dependent activator DctD.

Wang YK, Park S, Nixon BT, Hoover TR.

J Bacteriol. 2003 Oct;185(20):6215-9.

30.

Two-component signaling in the AAA + ATPase DctD: binding Mg2+ and BeF3- selects between alternate dimeric states of the receiver domain.

Park S, Meyer M, Jones AD, Yennawar HP, Yennawar NH, Nixon BT.

FASEB J. 2002 Dec;16(14):1964-6. Epub 2002 Oct 4.

PMID:
12368235
31.

Biochemical evidence for multiple dimeric states of the Sinorhizobium meliloti DctD receiver domain.

Park S, Zhang H, Jones AD, Nixon BT.

Biochemistry. 2002 Sep 10;41(36):10934-41.

PMID:
12206664
32.

A dimeric two-component receiver domain inhibits the sigma54-dependent ATPase in DctD.

Meyer MG, Park S, Zeringue L, Staley M, McKinstry M, Kaufman RI, Zhang H, Yan D, Yennawar N, Yennawar H, Farber GK, Nixon BT.

FASEB J. 2001 May;15(7):1326-8. No abstract available.

PMID:
11344129
33.

A rhizobial homolog of IHF stimulates transcription of dctA in Rhizobium leguminosarum but not in Sinorhizobium meliloti.

Sojda J 3rd, Gu B, Lee J, Hoover TR, Nixon BT.

Gene. 1999 Oct 1;238(2):489-500.

PMID:
10570977
34.

Crystallization and preliminary X-ray studies of the Rhizobium meliloti DctD two-component receiver domain.

Staley M, Zeringue LC, Kidd RD, Nixon BT, Farber GK.

Acta Crystallogr D Biol Crystallogr. 1998 Nov 1;54(Pt 6 Pt 2):1416-8.

PMID:
10089524
36.
39.

The glnA gene of the cyanobacterium Agmenellum quadruplicatum PR-6 is nonessential for ammonium assimilation.

Wagner SJ, Thomas SP, Kaufman RI, Nixon BT, Stevens SE Jr.

J Bacteriol. 1993 Feb;175(3):604-12.

41.

Identification of the diacylglycerol kinase structural gene of Rhizobium meliloti 1021.

Miller KJ, McKinstry MW, Hunt WP, Nixon BT.

Mol Plant Microbe Interact. 1992 Sep-Oct;5(5):363-71.

PMID:
1335301
43.
44.
45.
46.

Conserved domains in bacterial regulatory proteins that respond to environmental stimuli.

Ronson CW, Nixon BT, Ausubel FM.

Cell. 1987 Jun 5;49(5):579-81. No abstract available.

PMID:
3555840
47.

Rhizobium meliloti ntrA (rpoN) gene is required for diverse metabolic functions.

Ronson CW, Nixon BT, Albright LM, Ausubel FM.

J Bacteriol. 1987 Jun;169(6):2424-31.

Supplemental Content

Loading ...
Support Center