Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 144

1.

Enhancement of Iron Acquisition in Rice by the Mugineic Acid Synthase Gene With Ferric Iron Reductase Gene and OsIRO2 Confers Tolerance in Submerged and Nonsubmerged Calcareous Soils.

Masuda H, Aung MS, Kobayashi T, Hamada T, Nishizawa NK.

Front Plant Sci. 2019 Oct 18;10:1179. doi: 10.3389/fpls.2019.01179. eCollection 2019.

2.

OsbHLH058 and OsbHLH059 transcription factors positively regulate iron deficiency responses in rice.

Kobayashi T, Ozu A, Kobayashi S, An G, Jeon JS, Nishizawa NK.

Plant Mol Biol. 2019 Nov;101(4-5):471-486. doi: 10.1007/s11103-019-00917-8. Epub 2019 Sep 24.

3.

Fine control of aerenchyma and lateral root development through AUX/IAA- and ARF-dependent auxin signaling.

Yamauchi T, Tanaka A, Inahashi H, Nishizawa NK, Tsutsumi N, Inukai Y, Nakazono M.

Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20770-20775. doi: 10.1073/pnas.1907181116. Epub 2019 Sep 23.

4.

Nicotianamine Synthesis by OsNAS3 Is Important for Mitigating Iron Excess Stress in Rice.

Aung MS, Masuda H, Nozoye T, Kobayashi T, Jeon JS, An G, Nishizawa NK.

Front Plant Sci. 2019 Jun 4;10:660. doi: 10.3389/fpls.2019.00660. eCollection 2019.

5.

Characterization of the Nicotianamine Exporter ENA1 in Rice.

Nozoye T, von Wirén N, Sato Y, Higashiyama T, Nakanishi H, Nishizawa NK.

Front Plant Sci. 2019 Apr 30;10:502. doi: 10.3389/fpls.2019.00502. eCollection 2019.

6.

The Yellow Stripe-Like (YSL) Gene Functions in Internal Copper Transport in Peanut.

Dai J, Wang N, Xiong H, Qiu W, Nakanishi H, Kobayashi T, Nishizawa NK, Zuo Y.

Genes (Basel). 2018 Dec 14;9(12). pii: E635. doi: 10.3390/genes9120635.

7.

Laser Microdissection-Based Tissue-Specific Transcriptome Analysis Reveals a Novel Regulatory Network of Genes Involved in Heat-Induced Grain Chalk in Rice Endosperm.

Ishimaru T, Parween S, Saito Y, Shigemitsu T, Yamakawa H, Nakazono M, Masumura T, Nishizawa NK, Kondo M, Sreenivasulu N.

Plant Cell Physiol. 2019 Mar 1;60(3):626-642. doi: 10.1093/pcp/pcy233.

8.

Iron transport and its regulation in plants.

Kobayashi T, Nozoye T, Nishizawa NK.

Free Radic Biol Med. 2019 Mar;133:11-20. doi: 10.1016/j.freeradbiomed.2018.10.439. Epub 2018 Oct 29. Review.

PMID:
30385345
9.

Rice HRZ ubiquitin ligases are crucial for response to excess iron.

Aung MS, Kobayashi T, Masuda H, Nishizawa NK.

Physiol Plant. 2018 Apr 14. doi: 10.1111/ppl.12698. [Epub ahead of print]

PMID:
29655221
10.

The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains.

Senoura T, Sakashita E, Kobayashi T, Takahashi M, Aung MS, Masuda H, Nakanishi H, Nishizawa NK.

Plant Mol Biol. 2017 Nov;95(4-5):375-387. doi: 10.1007/s11103-017-0656-y. Epub 2017 Sep 4.

PMID:
28871478
11.

Paralogs and mutants show that one DMA synthase functions in iron homeostasis in rice.

Bashir K, Nozoye T, Nagasaka S, Rasheed S, Miyauchi N, Seki M, Nakanishi H, Nishizawa NK.

J Exp Bot. 2017 Mar 1;68(7):1785-1795. doi: 10.1093/jxb/erx065.

12.

An NADPH Oxidase RBOH Functions in Rice Roots during Lysigenous Aerenchyma Formation under Oxygen-Deficient Conditions.

Yamauchi T, Yoshioka M, Fukazawa A, Mori H, Nishizawa NK, Tsutsumi N, Yoshioka H, Nakazono M.

Plant Cell. 2017 Apr;29(4):775-790. doi: 10.1105/tpc.16.00976. Epub 2017 Mar 28.

13.

A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil.

Masuda H, Shimochi E, Hamada T, Senoura T, Kobayashi T, Aung MS, Ishimaru Y, Ogo Y, Nakanishi H, Nishizawa NK.

PLoS One. 2017 Mar 9;12(3):e0173441. doi: 10.1371/journal.pone.0173441. eCollection 2017.

14.

Regulating Subcellular Metal Homeostasis: The Key to Crop Improvement.

Bashir K, Rasheed S, Kobayashi T, Seki M, Nishizawa NK.

Front Plant Sci. 2016 Aug 5;7:1192. doi: 10.3389/fpls.2016.01192. eCollection 2016. Review.

15.

Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots.

Kobayashi T, Itai RN, Senoura T, Oikawa T, Ishimaru Y, Ueda M, Nakanishi H, Nishizawa NK.

Plant Mol Biol. 2016 Jul;91(4-5):533-47. doi: 10.1007/s11103-016-0486-3. Epub 2016 May 3.

16.

Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants.

Vigani G, Bashir K, Ishimaru Y, Lehmann M, Casiraghi FM, Nakanishi H, Seki M, Geigenberger P, Zocchi G, Nishizawa NK.

J Exp Bot. 2016 Mar;67(5):1357-68. doi: 10.1093/jxb/erv531. Epub 2015 Dec 17.

17.

Transcriptomic analyses of maize ys1 and ys3 mutants reveal maize iron homeostasis.

Nozoye T, Nakanishi H, Nishizawa NK.

Genom Data. 2015 May 30;5:97-9. doi: 10.1016/j.gdata.2015.05.021. eCollection 2015 Sep.

18.

The Phytosiderophore Efflux Transporter TOM2 Is Involved in Metal Transport in Rice.

Nozoye T, Nagasaka S, Kobayashi T, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK.

J Biol Chem. 2015 Nov 13;290(46):27688-99. doi: 10.1074/jbc.M114.635193. Epub 2015 Oct 2.

19.

Iron deficiency responses in rice roots.

Kobayashi T, Nakanishi Itai R, Nishizawa NK.

Rice (N Y). 2014 Dec;7(1):27. doi: 10.1186/s12284-014-0027-0. Epub 2014 Oct 7.

20.

Transcriptomic analysis of rice in response to iron deficiency and excess.

Bashir K, Hanada K, Shimizu M, Seki M, Nakanishi H, Nishizawa NK.

Rice (N Y). 2014 Dec;7(1):18. doi: 10.1186/s12284-014-0018-1. Epub 2014 Sep 12.

21.

Laser microdissection-based gene expression analysis in the aleurone layer and starchy endosperm of developing rice caryopses in the early storage phase.

Ishimaru T, Ida M, Hirose S, Shimamura S, Masumura T, Nishizawa NK, Nakazono M, Kondo M.

Rice (N Y). 2015 Dec;8(1):57. doi: 10.1186/s12284-015-0057-2. Epub 2015 Jul 16.

22.

Ethylene Biosynthesis Is Promoted by Very-Long-Chain Fatty Acids during Lysigenous Aerenchyma Formation in Rice Roots.

Yamauchi T, Shiono K, Nagano M, Fukazawa A, Ando M, Takamure I, Mori H, Nishizawa NK, Kawai-Yamada M, Tsutsumi N, Kato K, Nakazono M.

Plant Physiol. 2015 Sep;169(1):180-93. doi: 10.1104/pp.15.00106. Epub 2015 Jun 2.

23.

Iron deficiency regulated OsOPT7 is essential for iron homeostasis in rice.

Bashir K, Ishimaru Y, Itai RN, Senoura T, Takahashi M, An G, Oikawa T, Ueda M, Sato A, Uozumi N, Nakanishi H, Nishizawa NK.

Plant Mol Biol. 2015 May;88(1-2):165-76. doi: 10.1007/s11103-015-0315-0. Epub 2015 Apr 18.

PMID:
25893776
24.

Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions.

Takahashi H, Yamauchi T, Rajhi I, Nishizawa NK, Nakazono M.

Ann Bot. 2015 May;115(6):879-94. doi: 10.1093/aob/mcv018. Epub 2015 Apr 8.

25.

Intracellular iron sensing by the direct binding of iron to regulators.

Kobayashi T, Nishizawa NK.

Front Plant Sci. 2015 Mar 11;6:155. doi: 10.3389/fpls.2015.00155. eCollection 2015. No abstract available.

26.

Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis.

Ito S, Nozoye T, Sasaki E, Imai M, Shiwa Y, Shibata-Hatta M, Ishige T, Fukui K, Ito K, Nakanishi H, Nishizawa NK, Yajima S, Asami T.

PLoS One. 2015 Mar 20;10(3):e0119724. doi: 10.1371/journal.pone.0119724. eCollection 2015.

27.

Tissue-specific transcriptional profiling of iron-deficient and cadmium-stressed rice using laser capture microdissection.

Ogo Y, Kakei Y, Itai RN, Kobayashi T, Nakanishi H, Nishizawa NK.

Plant Signal Behav. 2014;9(8):e29427. doi: 10.4161/psb.29427.

28.

Enhanced levels of nicotianamine promote iron accumulation and tolerance to calcareous soil in soybean.

Nozoye T, Kim S, Kakei Y, Takahashi M, Nakanishi H, Nishizawa NK.

Biosci Biotechnol Biochem. 2014;78(10):1677-84. doi: 10.1080/09168451.2014.936350. Epub 2014 Jul 22.

PMID:
25047240
29.

RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa).

Shiono K, Ando M, Nishiuchi S, Takahashi H, Watanabe K, Nakamura M, Matsuo Y, Yasuno N, Yamanouchi U, Fujimoto M, Takanashi H, Ranathunge K, Franke RB, Shitan N, Nishizawa NK, Takamure I, Yano M, Tsutsumi N, Schreiber L, Yazaki K, Nakazono M, Kato K.

Plant J. 2014 Oct;80(1):40-51. doi: 10.1111/tpj.12614. Epub 2014 Aug 13.

30.

Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa).

Shiono K, Yamauchi T, Yamazaki S, Mohanty B, Malik AI, Nagamura Y, Nishizawa NK, Tsutsumi N, Colmer TD, Nakazono M.

J Exp Bot. 2014 Sep;65(17):4795-806. doi: 10.1093/jxb/eru235. Epub 2014 Jun 9.

PMID:
24913626
31.

Iron sensors and signals in response to iron deficiency.

Kobayashi T, Nishizawa NK.

Plant Sci. 2014 Jul;224:36-43. doi: 10.1016/j.plantsci.2014.04.002. Epub 2014 Apr 13.

32.

From laboratory to field: OsNRAMP5-knockdown rice is a promising candidate for Cd phytoremediation in paddy fields.

Takahashi R, Ishimaru Y, Shimo H, Bashir K, Senoura T, Sugimoto K, Ono K, Suzui N, Kawachi N, Ishii S, Yin YG, Fujimaki S, Yano M, Nishizawa NK, Nakanishi H.

PLoS One. 2014 Jun 5;9(6):e98816. doi: 10.1371/journal.pone.0098816. eCollection 2014.

33.

Expression of peanut Iron Regulated Transporter 1 in tobacco and rice plants confers improved iron nutrition.

Xiong H, Guo X, Kobayashi T, Kakei Y, Nakanishi H, Nozoye T, Zhang L, Shen H, Qiu W, Nishizawa NK, Zuo Y.

Plant Physiol Biochem. 2014 Jul;80:83-9. doi: 10.1016/j.plaphy.2014.03.021. Epub 2014 Mar 31.

PMID:
24727792
34.

Rice nicotianamine synthase localizes to particular vesicles for proper function.

Nozoye T, Tsunoda K, Nagasaka S, Bashir K, Takahashi M, Kobayashi T, Nakanishi H, Nishizawa NK.

Plant Signal Behav. 2014 Apr 4;9. pii: e28660. [Epub ahead of print]

35.

Iron biofortification of rice using different transgenic approaches.

Masuda H, Aung MS, Nishizawa NK.

Rice (N Y). 2013 Dec 19;6(1):40. doi: 10.1186/1939-8433-6-40.

36.

Rice genes involved in phytosiderophore biosynthesis are synchronously regulated during the early stages of iron deficiency in roots.

Itai RN, Ogo Y, Kobayashi T, Nakanishi H, Nishizawa NK.

Rice (N Y). 2013 Jun 25;6(1):16. doi: 10.1186/1939-8433-6-16.

37.

The knockdown of OsVIT2 and MIT affects iron localization in rice seed.

Bashir K, Takahashi R, Akhtar S, Ishimaru Y, Nakanishi H, Nishizawa NK.

Rice (N Y). 2013 Nov 20;6(1):31. doi: 10.1186/1939-8433-6-31.

38.

Development of a novel prediction method of cis-elements to hypothesize collaborative functions of cis-element pairs in iron-deficient rice.

Kakei Y, Ogo Y, Itai RN, Kobayashi T, Yamakawa T, Nakanishi H, Nishizawa NK.

Rice (N Y). 2013 Sep 22;6(1):22. doi: 10.1186/1939-8433-6-22.

39.

Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation.

Kobayashi T, Nagasaka S, Senoura T, Itai RN, Nakanishi H, Nishizawa NK.

Nat Commun. 2013;4:2792. doi: 10.1038/ncomms3792.

40.

Nicotianamine synthase 2 localizes to the vesicles of iron-deficient rice roots, and its mutation in the YXXφ or LL motif causes the disruption of vesicle formation or movement in rice.

Nozoye T, Nagasaka S, Bashir K, Takahashi M, Kobayashi T, Nakanishi H, Nishizawa NK.

Plant J. 2014 Jan;77(2):246-60. doi: 10.1111/tpj.12383. Epub 2013 Dec 31.

41.

Spatial transcriptomes of iron-deficient and cadmium-stressed rice.

Ogo Y, Kakei Y, Itai RN, Kobayashi T, Nakanishi H, Takahashi H, Nakazono M, Nishizawa NK.

New Phytol. 2014 Feb;201(3):781-94. doi: 10.1111/nph.12577. Epub 2013 Nov 5.

42.

Exploiting new tools for iron bio-fortification of rice.

Bashir K, Nozoye T, Ishimaru Y, Nakanishi H, Nishizawa NK.

Biotechnol Adv. 2013 Dec;31(8):1624-33. doi: 10.1016/j.biotechadv.2013.08.012. Epub 2013 Aug 22. Review.

PMID:
23973806
43.

Iron biofortification of myanmar rice.

Aung MS, Masuda H, Kobayashi T, Nakanishi H, Yamakawa T, Nishizawa NK.

Front Plant Sci. 2013 May 27;4:158. doi: 10.3389/fpls.2013.00158. eCollection 2013.

44.

Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene.

Masuda H, Kobayashi T, Ishimaru Y, Takahashi M, Aung MS, Nakanishi H, Mori S, Nishizawa NK.

Front Plant Sci. 2013 May 14;4:132. doi: 10.3389/fpls.2013.00132. eCollection 2013.

45.

Characterizing the crucial components of iron homeostasis in the maize mutants ys1 and ys3.

Nozoye T, Nakanishi H, Nishizawa NK.

PLoS One. 2013 May 8;8(5):e62567. doi: 10.1371/journal.pone.0062567. Print 2013.

46.

Using membrane transporters to improve crops for sustainable food production.

Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, Horie T, Kochian LV, Munns R, Nishizawa NK, Tsay YF, Sanders D.

Nature. 2013 May 2;497(7447):60-6. doi: 10.1038/nature11909.

47.

Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil.

Xiong H, Kakei Y, Kobayashi T, Guo X, Nakazono M, Takahashi H, Nakanishi H, Shen H, Zhang F, Nishizawa NK, Zuo Y.

Plant Cell Environ. 2013 Oct;36(10):1888-902. doi: 10.1111/pce.12097. Epub 2013 Apr 25.

48.

The road to micronutrient biofortification of rice: progress and prospects.

Bashir K, Takahashi R, Nakanishi H, Nishizawa NK.

Front Plant Sci. 2013 Feb 8;4:15. doi: 10.3389/fpls.2013.00015. eCollection 2013.

49.

Accumulation of starch in Zn-deficient rice.

Suzuki M, Bashir K, Inoue H, Takahashi M, Nakanishi H, Nishizawa NK.

Rice (N Y). 2012 Dec;5(1):9. doi: 10.1186/1939-8433-5-9. Epub 2012 Apr 6.

50.

Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice.

Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H.

Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19166-71. doi: 10.1073/pnas.1211132109. Epub 2012 Nov 6. Erratum in: Proc Natl Acad Sci U S A. 2018 May 14;:.

Supplemental Content

Loading ...
Support Center