Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 99

1.

Necroptosis mediators RIPK3 and MLKL suppress intracellular Listeria replication independently of host cell killing.

Sai K, Parsons C, House JS, Kathariou S, Ninomiya-Tsuji J.

J Cell Biol. 2019 Jun 3;218(6):1994-2005. doi: 10.1083/jcb.201810014. Epub 2019 Apr 11.

PMID:
30975711
2.

Coordinating Tissue Regeneration Through Transforming Growth Factor-β Activated Kinase 1 Inactivation and Reactivation.

Hsieh HHS, Agarwal S, Cholok DJ, Loder SJ, Kaneko K, Huber A, Chung MT, Ranganathan K, Habbouche J, Li J, Butts J, Reimer J, Kaura A, Drake J, Breuler C, Priest CR, Nguyen J, Brownley C, Peterson J, Ozgurel SU, Niknafs YS, Li S, Inagaki M, Scott G, Krebsbach PH, Longaker MT, Westover K, Gray N, Ninomiya-Tsuji J, Mishina Y, Levi B.

Stem Cells. 2019 Jun;37(6):766-778. doi: 10.1002/stem.2991. Epub 2019 Mar 14.

PMID:
30786091
3.

Compound mutations in Bmpr1a and Tak1 synergize facial deformities via increased cell death.

Liu X, Hayano S, Pan H, Inagaki M, Ninomiya-Tsuji J, Sun H, Mishina Y.

Genesis. 2018 Mar;56(3):e23093. doi: 10.1002/dvg.23093. Epub 2018 Feb 22.

4.

Erratum: Noncanonical cell death program independent of caspase activation cascade and necroptotic modules is elicited by loss of TGFβ-activated kinase 1.

Mihaly SR, Sakamachi Y, Ninomiya-Tsuji J, Morioka S.

Sci Rep. 2017 Sep 6;7(1):10695. doi: 10.1038/s41598-017-09609-z.

5.

Noncanonical cell death program independent of caspase activation cascade and necroptotic modules is elicited by loss of TGFβ-activated kinase 1.

Mihaly SR, Sakamachi Y, Ninomiya-Tsuji J, Morioka S.

Sci Rep. 2017 Jun 7;7(1):2918. doi: 10.1038/s41598-017-03112-1. Erratum in: Sci Rep. 2017 Sep 6;7(1):10695.

6.

TAK1 regulates resident macrophages by protecting lysosomal integrity.

Sakamachi Y, Morioka S, Mihaly SR, Takaesu G, Foley JF, Fessler MB, Ninomiya-Tsuji J.

Cell Death Dis. 2017 Feb 9;8(2):e2598. doi: 10.1038/cddis.2017.23.

7.

TAK1 Regulates the Nrf2 Antioxidant System Through Modulating p62/SQSTM1.

Hashimoto K, Simmons AN, Kajino-Sakamoto R, Tsuji Y, Ninomiya-Tsuji J.

Antioxid Redox Signal. 2016 Dec 10;25(17):953-964. Epub 2016 Jun 30.

8.

TAK1 regulates Paneth cell integrity partly through blocking necroptosis.

Simmons AN, Kajino-Sakamoto R, Ninomiya-Tsuji J.

Cell Death Dis. 2016 Apr 14;7:e2196. doi: 10.1038/cddis.2016.98.

9.

TAK1 determines susceptibility to endoplasmic reticulum stress and leptin resistance in the hypothalamus.

Sai K, Morioka S, Takaesu G, Muthusamy N, Ghashghaei HT, Hanafusa H, Matsumoto K, Ninomiya-Tsuji J.

J Cell Sci. 2016 May 1;129(9):1855-65. doi: 10.1242/jcs.180505. Epub 2016 Mar 16.

10.

TAK1 regulates hepatic lipid homeostasis through SREBP.

Morioka S, Sai K, Omori E, Ikeda Y, Matsumoto K, Ninomiya-Tsuji J.

Oncogene. 2016 Jul 21;35(29):3829-38. doi: 10.1038/onc.2015.453. Epub 2016 Mar 14.

11.

Tak1, Smad4 and Trim33 redundantly mediate TGF-β3 signaling during palate development.

Lane J, Yumoto K, Azhar M, Ninomiya-Tsuji J, Inagaki M, Hu Y, Deng CX, Kim J, Mishina Y, Kaartinen V.

Dev Biol. 2015 Feb 15;398(2):231-41. doi: 10.1016/j.ydbio.2014.12.006. Epub 2014 Dec 16.

12.

TAK1 control of cell death.

Mihaly SR, Ninomiya-Tsuji J, Morioka S.

Cell Death Differ. 2014 Nov;21(11):1667-76. doi: 10.1038/cdd.2014.123. Epub 2014 Aug 22. Review.

13.

Activated macrophage survival is coordinated by TAK1 binding proteins.

Mihaly SR, Morioka S, Ninomiya-Tsuji J, Takaesu G.

PLoS One. 2014 Apr 15;9(4):e94982. doi: 10.1371/journal.pone.0094982. eCollection 2014.

14.

TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation.

Morioka S, Broglie P, Omori E, Ikeda Y, Takaesu G, Matsumoto K, Ninomiya-Tsuji J.

J Cell Biol. 2014 Feb 17;204(4):607-23. doi: 10.1083/jcb.201305070.

15.

TAK1 binding protein 2 is essential for liver protection from stressors.

Ikeda Y, Morioka S, Matsumoto K, Ninomiya-Tsuji J.

PLoS One. 2014 Feb 3;9(2):e88037. doi: 10.1371/journal.pone.0088037. eCollection 2014.

16.

TGF-β-activated kinase 1 (Tak1) mediates agonist-induced Smad activation and linker region phosphorylation in embryonic craniofacial neural crest-derived cells.

Yumoto K, Thomas PS, Lane J, Matsuzaki K, Inagaki M, Ninomiya-Tsuji J, Scott GJ, Ray MK, Ishii M, Maxson R, Mishina Y, Kaartinen V.

J Biol Chem. 2013 May 10;288(19):13467-80. doi: 10.1074/jbc.M112.431775. Epub 2013 Apr 1.

17.

Kinase-independent feedback of the TAK1/TAB1 complex on BCL10 turnover and NF-κB activation.

Moreno-García ME, Sommer K, Rincon-Arano H, Brault M, Ninomiya-Tsuji J, Matesic LE, Rawlings DJ.

Mol Cell Biol. 2013 Mar;33(6):1149-63. doi: 10.1128/MCB.06407-11. Epub 2013 Jan 7.

18.

TAK1 (MAP3K7) signaling regulates hematopoietic stem cells through TNF-dependent and -independent mechanisms.

Takaesu G, Inagaki M, Takubo K, Mishina Y, Hess PR, Dean GA, Yoshimura A, Matsumoto K, Suda T, Ninomiya-Tsuji J.

PLoS One. 2012;7(11):e51073. doi: 10.1371/journal.pone.0051073. Epub 2012 Nov 30.

19.

TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration.

Morioka S, Inagaki M, Komatsu Y, Mishina Y, Matsumoto K, Ninomiya-Tsuji J.

Blood. 2012 Nov 1;120(18):3846-57. doi: 10.1182/blood-2012-03-416198. Epub 2012 Sep 12.

20.

Epithelial transforming growth factor β-activated kinase 1 (TAK1) is activated through two independent mechanisms and regulates reactive oxygen species.

Omori E, Inagaki M, Mishina Y, Matsumoto K, Ninomiya-Tsuji J.

Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3365-70. doi: 10.1073/pnas.1116188109. Epub 2012 Feb 13.

21.

Inhibition of autophagy by TAB2 and TAB3.

Criollo A, Niso-Santano M, Malik SA, Michaud M, Morselli E, Mariño G, Lachkar S, Arkhipenko AV, Harper F, Pierron G, Rain JC, Ninomiya-Tsuji J, Fuentes JM, Lavandero S, Galluzzi L, Maiuri MC, Kroemer G.

EMBO J. 2011 Nov 11;30(24):4908-20. doi: 10.1038/emboj.2011.413.

22.

Non-canonical β-catenin degradation mediates reactive oxygen species-induced epidermal cell death.

Omori E, Matsumoto K, Ninomiya-Tsuji J.

Oncogene. 2011 Jul 28;30(30):3336-44. doi: 10.1038/onc.2011.49. Epub 2011 Mar 7.

23.

Ablation of TAK1 upregulates reactive oxygen species and selectively kills tumor cells.

Omori E, Matsumoto K, Zhu S, Smart RC, Ninomiya-Tsuji J.

Cancer Res. 2010 Nov 1;70(21):8417-25. doi: 10.1158/0008-5472.CAN-10-1227. Epub 2010 Oct 19.

24.

TGF-beta-activated kinase 1 signaling maintains intestinal integrity by preventing accumulation of reactive oxygen species in the intestinal epithelium.

Kajino-Sakamoto R, Omori E, Nighot PK, Blikslager AT, Matsumoto K, Ninomiya-Tsuji J.

J Immunol. 2010 Oct 15;185(8):4729-37. doi: 10.4049/jimmunol.0903587. Epub 2010 Sep 20.

25.

Regulation of genotoxic stress response by homeodomain-interacting protein kinase 2 through phosphorylation of cyclic AMP response element-binding protein at serine 271.

Sakamoto K, Huang BW, Iwasaki K, Hailemariam K, Ninomiya-Tsuji J, Tsuji Y.

Mol Biol Cell. 2010 Aug 15;21(16):2966-74. doi: 10.1091/mbc.E10-01-0015. Epub 2010 Jun 23.

26.
27.

TAK1 kinase determines TRAIL sensitivity by modulating reactive oxygen species and cIAP.

Morioka S, Omori E, Kajino T, Kajino-Sakamoto R, Matsumoto K, Ninomiya-Tsuji J.

Oncogene. 2009 Jun 11;28(23):2257-65. doi: 10.1038/onc.2009.110. Epub 2009 May 4.

28.

Intestinal epithelial-derived TAK1 signaling is essential for cytoprotection against chemical-induced colitis.

Kim JY, Kajino-Sakamoto R, Omori E, Jobin C, Ninomiya-Tsuji J.

PLoS One. 2009;4(2):e4561. doi: 10.1371/journal.pone.0004561. Epub 2009 Feb 23.

29.

TAK1-binding protein 1, TAB1, mediates osmotic stress-induced TAK1 activation but is dispensable for TAK1-mediated cytokine signaling.

Inagaki M, Omori E, Kim JY, Komatsu Y, Scott G, Ray MK, Yamada G, Matsumoto K, Mishina Y, Ninomiya-Tsuji J.

J Biol Chem. 2008 Nov 28;283(48):33080-6. doi: 10.1074/jbc.M807574200. Epub 2008 Oct 1.

30.

Generation of a conditional mutant allele for Tab1 in mouse.

Inagaki M, Komatsu Y, Scott G, Yamada G, Ray M, Ninomiya-Tsuji J, Mishina Y.

Genesis. 2008 Aug;46(8):431-9. doi: 10.1002/dvg.20418.

31.

TAK1 regulates reactive oxygen species and cell death in keratinocytes, which is essential for skin integrity.

Omori E, Morioka S, Matsumoto K, Ninomiya-Tsuji J.

J Biol Chem. 2008 Sep 19;283(38):26161-8. doi: 10.1074/jbc.M804513200. Epub 2008 Jul 7.

32.

Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis.

Kajino-Sakamoto R, Inagaki M, Lippert E, Akira S, Robine S, Matsumoto K, Jobin C, Ninomiya-Tsuji J.

J Immunol. 2008 Jul 15;181(2):1143-52.

33.

TAB4 stimulates TAK1-TAB1 phosphorylation and binds polyubiquitin to direct signaling to NF-kappaB.

Prickett TD, Ninomiya-Tsuji J, Broglie P, Muratore-Schroeder TL, Shabanowitz J, Hunt DF, Brautigan DL.

J Biol Chem. 2008 Jul 11;283(28):19245-54. doi: 10.1074/jbc.M800943200. Epub 2008 May 2.

34.

Osmotic stress blocks NF-kappaB-dependent inflammatory responses by inhibiting ubiquitination of IkappaB.

HuangFu WC, Matsumoto K, Ninomiya-Tsuji J.

FEBS Lett. 2007 Dec 11;581(29):5549-54. Epub 2007 Nov 13.

35.

TAK1 is a central mediator of NOD2 signaling in epidermal cells.

Kim JY, Omori E, Matsumoto K, Núñez G, Ninomiya-Tsuji J.

J Biol Chem. 2008 Jan 4;283(1):137-44. Epub 2007 Oct 26.

36.

TAK1 MAPK kinase kinase mediates transforming growth factor-beta signaling by targeting SnoN oncoprotein for degradation.

Kajino T, Omori E, Ishii S, Matsumoto K, Ninomiya-Tsuji J.

J Biol Chem. 2007 Mar 30;282(13):9475-81. Epub 2007 Feb 2.

37.

Protein phosphatase 6 down-regulates TAK1 kinase activation in the IL-1 signaling pathway.

Kajino T, Ren H, Iemura S, Natsume T, Stefansson B, Brautigan DL, Matsumoto K, Ninomiya-Tsuji J.

J Biol Chem. 2006 Dec 29;281(52):39891-6. Epub 2006 Nov 1.

38.

TAK1 is indispensable for development of T cells and prevention of colitis by the generation of regulatory T cells.

Sato S, Sanjo H, Tsujimura T, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Takeuchi O, Akira S.

Int Immunol. 2006 Oct;18(10):1405-11. Epub 2006 Aug 28.

PMID:
16940043
39.

Osmotic stress activates the TAK1-JNK pathway while blocking TAK1-mediated NF-kappaB activation: TAO2 regulates TAK1 pathways.

Huangfu WC, Omori E, Akira S, Matsumoto K, Ninomiya-Tsuji J.

J Biol Chem. 2006 Sep 29;281(39):28802-10. Epub 2006 Aug 7.

40.

TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis.

Omori E, Matsumoto K, Sanjo H, Sato S, Akira S, Smart RC, Ninomiya-Tsuji J.

J Biol Chem. 2006 Jul 14;281(28):19610-7. Epub 2006 May 4.

41.

TAK1 is a component of the Epstein-Barr virus LMP1 complex and is essential for activation of JNK but not of NF-kappaB.

Uemura N, Kajino T, Sanjo H, Sato S, Akira S, Matsumoto K, Ninomiya-Tsuji J.

J Biol Chem. 2006 Mar 24;281(12):7863-72. Epub 2006 Jan 30.

42.

Essential function for the kinase TAK1 in innate and adaptive immune responses.

Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O, Akira S.

Nat Immunol. 2005 Nov;6(11):1087-95. Epub 2005 Sep 25.

PMID:
16186825
43.

AMP-activated protein kinase activates p38 mitogen-activated protein kinase by increasing recruitment of p38 MAPK to TAB1 in the ischemic heart.

Li J, Miller EJ, Ninomiya-Tsuji J, Russell RR 3rd, Young LH.

Circ Res. 2005 Oct 28;97(9):872-9. Epub 2005 Sep 22.

PMID:
16179588
44.

Transforming growth factor beta-activated kinase 1 is a key mediator of ovine follicle-stimulating hormone beta-subunit expression.

Safwat N, Ninomiya-Tsuji J, Gore AJ, Miller WL.

Endocrinology. 2005 Nov;146(11):4814-24. Epub 2005 Aug 4.

45.

TAK1-binding protein 2 facilitates ubiquitination of TRAF6 and assembly of TRAF6 with IKK in the IL-1 signaling pathway.

Kishida S, Sanjo H, Akira S, Matsumoto K, Ninomiya-Tsuji J.

Genes Cells. 2005 May;10(5):447-54.

46.

Activation mechanism of c-Jun amino-terminal kinase in the course of neural differentiation of P19 embryonic carcinoma cells.

Akiyama S, Yonezawa T, Kudo TA, Li MG, Wang H, Ito M, Yoshioka K, Ninomiya-Tsuji J, Matsumoto K, Kanamaru R, Tamura S, Kobayashi T.

J Biol Chem. 2004 Aug 27;279(35):36616-20. Epub 2004 Jun 24.

47.

Wnt-1 signal induces phosphorylation and degradation of c-Myb protein via TAK1, HIPK2, and NLK.

Kanei-Ishii C, Ninomiya-Tsuji J, Tanikawa J, Nomura T, Ishitani T, Kishida S, Kokura K, Kurahashi T, Ichikawa-Iwata E, Kim Y, Matsumoto K, Ishii S.

Genes Dev. 2004 Apr 1;18(7):816-29.

48.

Involvement of ASK1 in Ca2+-induced p38 MAP kinase activation.

Takeda K, Matsuzawa A, Nishitoh H, Tobiume K, Kishida S, Ninomiya-Tsuji J, Matsumoto K, Ichijo H.

EMBO Rep. 2004 Feb;5(2):161-6. Epub 2004 Jan 16.

49.

Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling.

Ishitani T, Takaesu G, Ninomiya-Tsuji J, Shibuya H, Gaynor RB, Matsumoto K.

EMBO J. 2003 Dec 1;22(23):6277-88.

50.

A dominant negative TAK1 inhibits cellular fibrotic responses induced by TGF-beta.

Ono K, Ohtomo T, Ninomiya-Tsuji J, Tsuchiya M.

Biochem Biophys Res Commun. 2003 Jul 25;307(2):332-7.

PMID:
12859960

Supplemental Content

Loading ...
Support Center