Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 17

1.

VDAC2 enables BAX to mediate apoptosis and limit tumor development.

Chin HS, Li MX, Tan IKL, Ninnis RL, Reljic B, Scicluna K, Dagley LF, Sandow JJ, Kelly GL, Samson AL, Chappaz S, Khaw SL, Chang C, Morokoff A, Brinkmann K, Webb A, Hockings C, Hall CM, Kueh AJ, Ryan MT, Kluck RM, Bouillet P, Herold MJ, Gray DHD, Huang DCS, van Delft MF, Dewson G.

Nat Commun. 2018 Nov 26;9(1):4976. doi: 10.1038/s41467-018-07309-4.

2.

Bid chimeras indicate that most BH3-only proteins can directly activate Bak and Bax, and show no preference for Bak versus Bax.

Hockings C, Anwari K, Ninnis RL, Brouwer J, O'Hely M, Evangelista M, Hinds MG, Czabotar PE, Lee EF, Fairlie WD, Dewson G, Kluck RM.

Cell Death Dis. 2015 Apr 23;6:e1735. doi: 10.1038/cddis.2015.105.

3.

Bax targets mitochondria by distinct mechanisms before or during apoptotic cell death: a requirement for VDAC2 or Bak for efficient Bax apoptotic function.

Ma SB, Nguyen TN, Tan I, Ninnis R, Iyer S, Stroud DA, Menard M, Kluck RM, Ryan MT, Dewson G.

Cell Death Differ. 2014 Dec;21(12):1925-35. doi: 10.1038/cdd.2014.119. Epub 2014 Aug 22.

4.

RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis.

Rickard JA, O'Donnell JA, Evans JM, Lalaoui N, Poh AR, Rogers T, Vince JE, Lawlor KE, Ninnis RL, Anderton H, Hall C, Spall SK, Phesse TJ, Abud HE, Cengia LH, Corbin J, Mifsud S, Di Rago L, Metcalf D, Ernst M, Dewson G, Roberts AW, Alexander WS, Murphy JM, Ekert PG, Masters SL, Vaux DL, Croker BA, Gerlic M, Silke J.

Cell. 2014 May 22;157(5):1175-88. doi: 10.1016/j.cell.2014.04.019. Epub 2014 May 8.

5.

Cyclic-AMP-dependent protein kinase A regulates apoptosis by stabilizing the BH3-only protein Bim.

Moujalled D, Weston R, Anderton H, Ninnis R, Goel P, Coley A, Huang DC, Wu L, Strasser A, Puthalakath H.

EMBO Rep. 2011 Jan;12(1):77-83. doi: 10.1038/embor.2010.190. Epub 2010 Dec 10.

6.

Modification of PATase by L/F-transferase generates a ClpS-dependent N-end rule substrate in Escherichia coli.

Ninnis RL, Spall SK, Talbo GH, Truscott KN, Dougan DA.

EMBO J. 2009 Jun 17;28(12):1732-44. doi: 10.1038/emboj.2009.134. Epub 2009 May 14.

7.

Effects of hypoosmolality on whole-body lipolysis in man.

Bilz S, Ninnis R, Keller U.

Metabolism. 1999 Apr;48(4):472-6.

PMID:
10206440
8.

Effects of hyper- and hypoosmolality on whole body protein and glucose kinetics in humans.

Berneis K, Ninnis R, Häussinger D, Keller U.

Am J Physiol. 1999 Jan;276(1):E188-95. doi: 10.1152/ajpendo.1999.276.1.E188.

PMID:
9886966
10.
11.

Effects of insulin-like growth factor I combined with growth hormone on glucocorticoid-induced whole-body protein catabolism in man.

Berneis K, Ninnis R, Girard J, Frey BM, Keller U.

J Clin Endocrinol Metab. 1997 Aug;82(8):2528-34.

PMID:
9253329
12.
13.

Effects of growth hormone and IGF-I on glucocorticoid-induced protein catabolism in humans.

Oehri M, Ninnis R, Girard J, Frey FJ, Keller U.

Am J Physiol. 1996 Apr;270(4 Pt 1):E552-8.

PMID:
8928758
14.

Early glycogenolysis and late glycogenesis in human liver after intravenous administration of galactose.

Fried R, Beckmann N, Keller U, Ninnis R, Stalder G, Seelig J.

Am J Physiol. 1996 Jan;270(1 Pt 1):G14-9.

PMID:
8772496
15.
17.

Effect of increasing doses of recombinant human insulin-like growth factor-I on glucose, lipid, and leucine metabolism in man.

Turkalj I, Keller U, Ninnis R, Vosmeer S, Stauffacher W.

J Clin Endocrinol Metab. 1992 Nov;75(5):1186-91.

PMID:
1430077

Supplemental Content

Loading ...
Support Center