Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 35

1.

EXP2 is a nutrient-permeable channel in the vacuolar membrane of Plasmodium and is essential for protein export via PTEX.

Garten M, Nasamu AS, Niles JC, Zimmerberg J, Goldberg DE, Beck JR.

Nat Microbiol. 2018 Aug 27. doi: 10.1038/s41564-018-0222-7. [Epub ahead of print]

PMID:
30150733
2.

ATG8 Is Essential Specifically for an Autophagy-Independent Function in Apicoplast Biogenesis in Blood-Stage Malaria Parasites.

Walczak M, Ganesan SM, Niles JC, Yeh E.

MBio. 2018 Jan 2;9(1). pii: e02021-17. doi: 10.1128/mBio.02021-17.

3.

Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion.

Nasamu AS, Glushakova S, Russo I, Vaupel B, Oksman A, Kim AS, Fremont DH, Tolia N, Beck JR, Meyers MJ, Niles JC, Zimmerberg J, Goldberg DE.

Science. 2017 Oct 27;358(6362):518-522. doi: 10.1126/science.aan1478.

PMID:
29074774
4.

Small molecule inhibition of apicomplexan FtsH1 disrupts plastid biogenesis in human pathogens.

Amberg-Johnson K, Hari SB, Ganesan SM, Lorenzi HA, Sauer RT, Niles JC, Yeh E.

Elife. 2017 Aug 18;6. pii: e29865. doi: 10.7554/eLife.29865.

5.

Quantification of labile heme in live malaria parasites using a genetically encoded biosensor.

Abshire JR, Rowlands CJ, Ganesan SM, So PT, Niles JC.

Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):E2068-E2076. doi: 10.1073/pnas.1615195114. Epub 2017 Feb 27.

6.

The chaperonin TRiC forms an oligomeric complex in the malaria parasite cytosol.

Spillman NJ, Beck JR, Ganesan SM, Niles JC, Goldberg DE.

Cell Microbiol. 2017 Jun;19(6). doi: 10.1111/cmi.12719. Epub 2017 Jan 24.

7.

A Genome-wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes.

Sidik SM, Huet D, Ganesan SM, Huynh MH, Wang T, Nasamu AS, Thiru P, Saeij JPJ, Carruthers VB, Niles JC, Lourido S.

Cell. 2016 Sep 8;166(6):1423-1435.e12. doi: 10.1016/j.cell.2016.08.019. Epub 2016 Sep 2.

8.

Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite.

Dankwa S, Lim C, Bei AK, Jiang RH, Abshire JR, Patel SD, Goldberg JM, Moreno Y, Kono M, Niles JC, Duraisingh MT.

Nat Commun. 2016 Apr 4;7:11187. doi: 10.1038/ncomms11187.

9.

Synthetic RNA-protein modules integrated with native translation mechanisms to control gene expression in malaria parasites.

Ganesan SM, Falla A, Goldfless SJ, Nasamu AS, Niles JC.

Nat Commun. 2016 Mar 1;7:10727. doi: 10.1038/ncomms10727.

10.

Identification of malaria parasite-infected red blood cell surface aptamers by inertial microfluidic SELEX (I-SELEX).

Birch CM, Hou HW, Han J, Niles JC.

Sci Rep. 2015 Jul 1;5:11347. doi: 10.1038/srep11347.

11.

Versatile control of Plasmodium falciparum gene expression with an inducible protein-RNA interaction.

Goldfless SJ, Wagner JC, Niles JC.

Nat Commun. 2014 Nov 5;5:5329. doi: 10.1038/ncomms6329.

12.

Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum.

Wagner JC, Platt RJ, Goldfless SJ, Zhang F, Niles JC.

Nat Methods. 2014 Sep;11(9):915-8. doi: 10.1038/nmeth.3063. Epub 2014 Aug 10.

13.

An integrated strategy for efficient vector construction and multi-gene expression in Plasmodium falciparum.

Wagner JC, Goldfless SJ, Ganesan SM, Lee MC, Fidock DA, Niles JC.

Malar J. 2013 Oct 26;12:373. doi: 10.1186/1475-2875-12-373.

14.

Inducible control of subcellular RNA localization using a synthetic protein-RNA aptamer interaction.

Belmont BJ, Niles JC.

PLoS One. 2012;7(10):e46868. doi: 10.1371/journal.pone.0046868. Epub 2012 Oct 8.

15.

Computational synchronization of microarray data with application to Plasmodium falciparum.

Zhao W, Dauwels J, Niles JC, Cao J.

Proteome Sci. 2012 Jun 21;10 Suppl 1:S10. doi: 10.1186/1477-5956-10-S1-S10.

16.

Malarial parasites accumulate labile zinc pools.

Niles JC.

Chem Biol. 2012 Jun 22;19(6):660-1. doi: 10.1016/j.chembiol.2012.06.003.

17.

Direct and specific chemical control of eukaryotic translation with a synthetic RNA-protein interaction.

Goldfless SJ, Belmont BJ, de Paz AM, Liu JF, Niles JC.

Nucleic Acids Res. 2012 May;40(9):e64. doi: 10.1093/nar/gks028. Epub 2012 Jan 24.

18.

Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis.

Kang JW, Lue N, Kong CR, Barman I, Dingari NC, Goldfless SJ, Niles JC, Dasari RR, Feld MS.

Biomed Opt Express. 2011 Sep 1;2(9):2484-92. doi: 10.1364/BOE.2.002484. Epub 2011 Aug 1.

19.

A microfabricated deformability-based flow cytometer with application to malaria.

Bow H, Pivkin IV, Diez-Silva M, Goldfless SJ, Dao M, Niles JC, Suresh S, Han J.

Lab Chip. 2011 Mar 21;11(6):1065-73. doi: 10.1039/c0lc00472c. Epub 2011 Feb 3.

20.

Engineering a direct and inducible protein-RNA interaction to regulate RNA biology.

Belmont BJ, Niles JC.

ACS Chem Biol. 2010 Sep 17;5(9):851-61. doi: 10.1021/cb100070j.

PMID:
20545348
21.

Inhibiting Plasmodium falciparum growth and heme detoxification pathway using heme-binding DNA aptamers.

Niles JC, Derisi JL, Marletta MA.

Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13266-71. doi: 10.1073/pnas.0906370106. Epub 2009 Jul 24.

22.

Utilizing RNA aptamers to probe a physiologically important heme-regulated cellular network.

Niles JC, Marletta MA.

ACS Chem Biol. 2006 Sep 19;1(8):515-24. Erratum in: ACS Chem Biol. 2006 Oct 20;1(9):601.

PMID:
17168539
23.

Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation.

Niles JC, Wishnok JS, Tannenbaum SR.

Nitric Oxide. 2006 Mar;14(2):109-21. Epub 2005 Dec 13. Review.

PMID:
16352449
24.

Urea lesion formation in DNA as a consequence of 7,8-dihydro-8-oxoguanine oxidation and hydrolysis provides a potent source of point mutations.

Henderson PT, Neeley WL, Delaney JC, Gu F, Niles JC, Hah SS, Tannenbaum SR, Essigmann JM.

Chem Res Toxicol. 2005 Jan;18(1):12-8.

PMID:
15651843
26.
27.

Spirodihydantoin is a minor product of 5-hydroxyisourate in urate oxidation.

Yu H, Niles JC, Wishnok JS, Tannenbaum SR.

Org Lett. 2004 Sep 16;6(19):3417-20.

PMID:
15355066
28.

Peroxynitrite reacts with 8-nitropurines to yield 8-oxopurines.

Lee JM, Niles JC, Wishnok JS, Tannenbaum SR.

Chem Res Toxicol. 2002 Jan;15(1):7-14.

PMID:
11800591
29.

A novel nitroimidazole compound formed during the reaction of peroxynitrite with 2',3',5'-tri-O-acetyl-guanosine.

Niles JC, Wishnok JS, Tannenbaum SR.

J Am Chem Soc. 2001 Dec 12;123(49):12147-51.

PMID:
11734012
32.

Peroxynitrite reaction products of 3',5'-di-O-acetyl-8-oxo-7, 8-dihydro-2'-deoxyguanosine.

Niles JC, Burney S, Singh SP, Wishnok JS, Tannenbaum SR.

Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11729-34.

33.

DNA damage in deoxynucleosides and oligonucleotides treated with peroxynitrite.

Burney S, Niles JC, Dedon PC, Tannenbaum SR.

Chem Res Toxicol. 1999 Jun;12(6):513-20.

PMID:
10368314
34.

Peroxynitrite-induced reactions of synthetic oligonucleotides containing 8-oxoguanine.

Tretyakova NY, Niles JC, Burney S, Wishnok JS, Tannenbaum SR.

Chem Res Toxicol. 1999 May;12(5):459-66.

PMID:
10328757
35.

The chemistry of DNA damage from nitric oxide and peroxynitrite.

Burney S, Caulfield JL, Niles JC, Wishnok JS, Tannenbaum SR.

Mutat Res. 1999 Mar 8;424(1-2):37-49. Review.

PMID:
10064848

Supplemental Content

Loading ...
Support Center