Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 216

1.

Challenges and strategies in drug delivery systems for treatment of pulmonary infections.

Ho DK, Nichols BLB, Edgar KJ, Murgia X, Loretz B, Lehr CM.

Eur J Pharm Biopharm. 2019 Nov;144:110-124. doi: 10.1016/j.ejpb.2019.09.002. Epub 2019 Sep 4. Review.

PMID:
31493510
2.

90th Anniversary Commentary: Malnutrition Affects Cellular Growth and Competency; Propositions by Myron Winick.

Nichols BL.

J Nutr. 2018 Oct 1;148(10):1650-1651. doi: 10.1093/jn/nxy137. No abstract available.

PMID:
30281111
3.

13C-Labeled-Starch Breath Test in Congenital Sucrase-isomaltase Deficiency.

Robayo-Torres CC, Diaz-Sotomayor M, Hamaker BR, Baker SS, Chumpitazi BP, Opekun AR, Nichols BL.

J Pediatr Gastroenterol Nutr. 2018 Jun;66 Suppl 3:S61-S64. doi: 10.1097/MPG.0000000000001858.

4.

Demographic and Clinical Correlates of Mucosal Disaccharidase Deficiencies in Children With Functional Dyspepsia.

Chumpitazi BP, Robayo-Torres CC, Tsai CM, Opekun AR, Baker SS, Nichols BL, Gilger MA.

J Pediatr Gastroenterol Nutr. 2018 Jun;66 Suppl 3:S52-S55. doi: 10.1097/MPG.0000000000001859.

5.

Metabolic Impacts of Maltase Deficiencies.

Nichols BL, Baker SS, Quezada-Calvillo R.

J Pediatr Gastroenterol Nutr. 2018 Jun;66 Suppl 3:S24-S29. doi: 10.1097/MPG.0000000000001955. Review.

PMID:
29762372
6.

Influence of Polymer and Drug Loading on the Release Profile and Membrane Transport of Telaprevir.

Mosquera-Giraldo LI, Li N, Wilson VR, Nichols BLB, Edgar KJ, Taylor LS.

Mol Pharm. 2018 Apr 2;15(4):1700-1713. doi: 10.1021/acs.molpharmaceut.8b00104. Epub 2018 Mar 21.

PMID:
29513538
7.

Dietary starch breakdown product sensing mobilizes and apically activates α-glucosidases in small intestinal enterocytes.

Chegeni M, Amiri M, Nichols BL, Naim HY, Hamaker BR.

FASEB J. 2018 Jul;32(7):3903-3911. doi: 10.1096/fj.201701029R. Epub 2018 Feb 20.

PMID:
29465310
8.

Traditional Malian Solid Foods Made from Sorghum and Millet Have Markedly Slower Gastric Emptying than Rice, Potato, or Pasta.

Cisse F, Erickson DP, Hayes AMR, Opekun AR, Nichols BL, Hamaker BR.

Nutrients. 2018 Jan 26;10(2). pii: E124. doi: 10.3390/nu10020124.

9.

Cellulose-based amorphous solid dispersions enhance rifapentine delivery characteristics in vitro.

Winslow CJ, Nichols BLB, Novo DC, Mosquera-Giraldo LI, Taylor LS, Edgar KJ, Neilson AP.

Carbohydr Polym. 2018 Feb 15;182:149-158. doi: 10.1016/j.carbpol.2017.11.024. Epub 2017 Nov 8.

PMID:
29279109
10.

Phenolic compounds increase the transcription of mouse intestinal maltase-glucoamylase and sucrase-isomaltase.

Simsek M, Quezada-Calvillo R, Nichols BL, Hamaker BR.

Food Funct. 2017 May 24;8(5):1915-1924. doi: 10.1039/c7fo00015d.

PMID:
28443839
11.

Improved Starch Digestion of Sucrase-deficient Shrews Treated With Oral Glucoamylase Enzyme Supplements.

Nichols BL, Avery SE, Quezada-Calvillo R, Kilani SB, Lin AH, Burrin DG, Hodges BE, Chacko SK, Opekun AR, Hindawy ME, Hamaker BR, Oda SI.

J Pediatr Gastroenterol Nutr. 2017 Aug;65(2):e35-e42. doi: 10.1097/MPG.0000000000001561.

PMID:
28267073
12.

Novel cellulose-based amorphous solid dispersions enhance quercetin solution concentrations in vitro.

Gilley AD, Arca HC, Nichols BLB, Mosquera-Giraldo LI, Taylor LS, Edgar KJ, Neilson AP.

Carbohydr Polym. 2017 Feb 10;157:86-93. doi: 10.1016/j.carbpol.2016.09.067. Epub 2016 Sep 24.

PMID:
27988001
13.

Severe Metabolic Acidosis and Hepatopathy due to Leukoencephalopathy with Thalamus and Brainstem Involvement and High Lactate.

Sellars EA, Balmakund T, Bosanko K, Nichols BL, Kahler SG, Zarate YA.

Neuropediatrics. 2017 Apr;48(2):108-110. doi: 10.1055/s-0036-1593984. Epub 2016 Nov 22.

PMID:
27875839
14.

Contribution of the Individual Small Intestinal α-Glucosidases to Digestion of Unusual α-Linked Glycemic Disaccharides.

Lee BH, Rose DR, Lin AH, Quezada-Calvillo R, Nichols BL, Hamaker BR.

J Agric Food Chem. 2016 Aug 24;64(33):6487-94. doi: 10.1021/acs.jafc.6b01816. Epub 2016 Aug 9.

PMID:
27480812
15.

Taste cell-expressed α-glucosidase enzymes contribute to gustatory responses to disaccharides.

Sukumaran SK, Yee KK, Iwata S, Kotha R, Quezada-Calvillo R, Nichols BL, Mohan S, Pinto BM, Shigemura N, Ninomiya Y, Margolskee RF.

Proc Natl Acad Sci U S A. 2016 May 24;113(21):6035-40. doi: 10.1073/pnas.1520843113. Epub 2016 May 9.

16.

Milk glucosidase activity enables suckled pup starch digestion.

Nichols BL, Diaz-Sotomayor M, Avery SE, Chacko SK, Hadsell DL, Baker SS, Hamaker BR, Yan LK, Lin HM, Quezada-Calvillo R.

Mol Cell Pediatr. 2016 Dec;3(1):4. doi: 10.1186/s40348-016-0032-z. Epub 2016 Feb 1.

17.

Dietary phenolic compounds selectively inhibit the individual subunits of maltase-glucoamylase and sucrase-isomaltase with the potential of modulating glucose release.

Simsek M, Quezada-Calvillo R, Ferruzzi MG, Nichols BL, Hamaker BR.

J Agric Food Chem. 2015 Apr 22;63(15):3873-9. doi: 10.1021/jf505425d. Epub 2015 Apr 13.

PMID:
25816913
18.

Local leadership and the Affordable Care Act.

Williams SL, Nichols BL, Barton MK, De LaCruz M, Hernandez B.

J Public Health Manag Pract. 2015 Jan-Feb;21 Suppl 1:S87-92. doi: 10.1097/PHH.0000000000000139.

19.

Branch pattern of starch internal structure influences the glucogenesis by mucosal Nt-maltase-glucoamylase.

Lin AH, Ao Z, Quezada-Calvillo R, Nichols BL, Lin CT, Hamaker BR.

Carbohydr Polym. 2014 Oct 13;111:33-40. doi: 10.1016/j.carbpol.2014.04.027. Epub 2014 Apr 22.

PMID:
25037326
20.

Mucosal C-terminal maltase-glucoamylase hydrolyzes large size starch digestion products that may contribute to rapid postprandial glucose generation.

Lee BH, Lin AH, Nichols BL, Jones K, Rose DR, Quezada-Calvillo R, Hamaker BR.

Mol Nutr Food Res. 2014 May;58(5):1111-21. doi: 10.1002/mnfr.201300599. Epub 2014 Jan 20.

PMID:
24442968
21.

Different sucrose-isomaltase response of Caco-2 cells to glucose and maltose suggests dietary maltose sensing.

Cheng MW, Chegeni M, Kim KH, Zhang G, Benmoussa M, Quezada-Calvillo R, Nichols BL, Hamaker BR.

J Clin Biochem Nutr. 2014 Jan;54(1):55-60. doi: 10.3164/jcbn.13-59. Epub 2013 Dec 20.

22.

Maltase-glucoamylase modulates gluconeogenesis and sucrase-isomaltase dominates starch digestion glucogenesis.

Diaz-Sotomayor M, Quezada-Calvillo R, Avery SE, Chacko SK, Yan LK, Lin AH, Ao ZH, Hamaker BR, Nichols BL.

J Pediatr Gastroenterol Nutr. 2013 Dec;57(6):704-12. doi: 10.1097/MPG.0b013e3182a27438.

PMID:
23838818
23.

Gloria R. Smith, 1934-2013.

Nichols BL.

Policy Polit Nurs Pract. 2013 Feb;14(1):5. doi: 10.1177/1527154413493672. Epub 2013 Jun 27. No abstract available.

PMID:
23812795
24.

Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal α-glucosidase level and are slowly digestible in vivo.

Lee BH, Yan L, Phillips RJ, Reuhs BL, Jones K, Rose DR, Nichols BL, Quezada-Calvillo R, Yoo SH, Hamaker BR.

PLoS One. 2013;8(4):e59745. doi: 10.1371/journal.pone.0059745. Epub 2013 Apr 2.

25.

Enterocyte loss of polarity and gut wound healing rely upon the F-actin-severing function of villin.

Ubelmann F, Chamaillard M, El-Marjou F, Simon A, Netter J, Vignjevic D, Nichols BL, Quezada-Calvillo R, Grandjean T, Louvard D, Revenu C, Robine S.

Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):E1380-9. doi: 10.1073/pnas.1218446110. Epub 2013 Mar 21.

26.

Inhibition of maltase-glucoamylase activity to hydrolyze α-1,4 linkages by the presence of undigested sucrose.

Lee BH, Quezada-Calvillo R, Nichols BL Jr, Rose DR, Hamaker BR.

J Pediatr Gastroenterol Nutr. 2012 Nov;55 Suppl 2:S45-7. doi: 10.1097/01.mpg.0000421415.95751.f7. No abstract available.

PMID:
23103657
27.

Direct starch digestion by sucrase-isomaltase and maltase-glucoamylase.

Lin AH, Hamaker BR, Nichols BL Jr.

J Pediatr Gastroenterol Nutr. 2012 Nov;55 Suppl 2:S43-5. doi: 10.1097/01.mpg.0000421414.95751.be. No abstract available.

PMID:
23103656
28.

The nature of raw starch digestion.

Ao Z, Quezada-Calvillo R, Nichols BL Jr, Rose DR, Sterchi EE, Hamaker BR.

J Pediatr Gastroenterol Nutr. 2012 Nov;55 Suppl 2:S42-3. doi: 10.1097/01.mpg.0000421413.18623.f9. No abstract available.

PMID:
23103655
29.

Congenital sucrase-isomaltase deficiency: summary of an evaluation in one family.

Chumpitazi BP, Robayo-Torres CC, Opekun AR, Nichols BL Jr, Naim HY.

J Pediatr Gastroenterol Nutr. 2012 Nov;55 Suppl 2:S36. doi: 10.1097/01.mpg.0000421409.65257.fc. No abstract available.

30.

Poor starch digestion in children with CSID and recurrent abdominal pain.

Robayo-Torres CC, Baker SS, Chumpitazi BP, Lecea CE, Nichols BL Jr, Opekun AR.

J Pediatr Gastroenterol Nutr. 2012 Nov;55 Suppl 2:S32-4. doi: 10.1097/01.mpg.0000421407.88128.5c. No abstract available.

PMID:
23103649
31.

Frequency of sucrase deficiency in mucosal biopsies.

Nichols BL Jr, Adams B, Roach CM, Ma CX, Baker SS.

J Pediatr Gastroenterol Nutr. 2012 Nov;55 Suppl 2:S28-30. doi: 10.1097/01.mpg.0000421405.42386.64. No abstract available.

PMID:
23103647
32.

50 years of progress since congenital sucrase-isomaltase deficiency recognition.

Nichols BL Jr, Auricchio S.

J Pediatr Gastroenterol Nutr. 2012 Nov;55 Suppl 2:S2-7. doi: 10.1097/01.mpg.0000421400.50010.2a. No abstract available.

PMID:
23103644
33.

Research progress reported at the 50th Anniversary of the Discovery of Congenital Sucrase-Isomaltase Deficiency Workshop.

Gilger M, Hamaker B, Nichols BL Jr, Auricchio S, Treem WR, Naim HY, Heine M, Zimmer KP, Jones K, Eskandari R, Pinto BM, Rose DR, Lee BH, Quezada-Calvillo R, Adams B, Roach CM, Ma CX, Baker SS, Slawson MH, Robayo-Torres CC, Chumpitazi BP, Lecea CE, Opekun AR, Uhrich S, Wu Z, Huang JY, Scott CR, Chumpitazi BP, McMeans AR, Scholz D, Shulman RJ, Ao Z, Sterchi EE, Lin AH.

J Pediatr Gastroenterol Nutr. 2012 Nov;55 Suppl 2:S1. doi: 10.1097/01.mpg.0000422151.38401.69. No abstract available.

34.

Starch source influences dietary glucose generation at the mucosal α-glucosidase level.

Lin AH, Lee BH, Nichols BL, Quezada-Calvillo R, Rose DR, Naim HY, Hamaker BR.

J Biol Chem. 2012 Oct 26;287(44):36917-21. doi: 10.1074/jbc.M112.378331. Epub 2012 Sep 17.

35.

Modulation of starch digestion for slow glucose release through "toggling" of activities of mucosal α-glucosidases.

Lee BH, Eskandari R, Jones K, Reddy KR, Quezada-Calvillo R, Nichols BL, Rose DR, Hamaker BR, Pinto BM.

J Biol Chem. 2012 Sep 14;287(38):31929-38. doi: 10.1074/jbc.M112.351858. Epub 2012 Jul 31.

36.

Unexpected high digestion rate of cooked starch by the Ct-maltase-glucoamylase small intestine mucosal α-glucosidase subunit.

Lin AH, Nichols BL, Quezada-Calvillo R, Avery SE, Sim L, Rose DR, Naim HY, Hamaker BR.

PLoS One. 2012;7(5):e35473. doi: 10.1371/journal.pone.0035473. Epub 2012 May 1.

37.

Mapping the intestinal alpha-glucogenic enzyme specificities of starch digesting maltase-glucoamylase and sucrase-isomaltase.

Jones K, Sim L, Mohan S, Kumarasamy J, Liu H, Avery S, Naim HY, Quezada-Calvillo R, Nichols BL, Pinto BM, Rose DR.

Bioorg Med Chem. 2011 Jul 1;19(13):3929-34. doi: 10.1016/j.bmc.2011.05.033. Epub 2011 May 24.

PMID:
21669536
38.

Samuel J. Fomon, MD: Champion of growth.

Nichols BL.

J Nutr. 2011 Apr 1;141(4):545-7. doi: 10.3945/jn.110.136648. Epub 2011 Mar 2. No abstract available.

PMID:
21367938
39.

Introduction: Building Global Alliances V: The Challenges of Migration For Health Professional Women.

Nichols BL.

Policy Polit Nurs Pract. 2010 May;11(2):140-1. doi: 10.1177/1527154410384141.

PMID:
20971933
40.

An integrative review of global nursing workforce issues.

Nichols BL, Davis CR, Richardson DR.

Annu Rev Nurs Res. 2010;28:113-32. Review.

PMID:
21639025
41.

[General scarcity of nurses and its consequences on the supply of nurses going to the United States].

Nichols BL.

Soins. 2009 Oct;(739):48-9. French. No abstract available.

PMID:
19928679
42.

13C-breath tests for sucrose digestion in congenital sucrase isomaltase-deficient and sacrosidase-supplemented patients.

Robayo-Torres CC, Opekun AR, Quezada-Calvillo R, Villa X, Smith EO, Navarrete M, Baker SS, Nichols BL.

J Pediatr Gastroenterol Nutr. 2009 Apr;48(4):412-8.

43.

Introduction: Building Global Alliances IV: Global Health Challenges in a World Divided by Health Inequities.

Nichols BL.

Policy Polit Nurs Pract. 2008 Nov;9(4):305-6. doi: 10.1177/1527154408328804.

PMID:
19258331
44.

Mucosal maltase-glucoamylase plays a crucial role in starch digestion and prandial glucose homeostasis of mice.

Nichols BL, Quezada-Calvillo R, Robayo-Torres CC, Ao Z, Hamaker BR, Butte NF, Marini J, Jahoor F, Sterchi EE.

J Nutr. 2009 Apr;139(4):684-90. doi: 10.3945/jn.108.098434. Epub 2009 Feb 4.

45.

Establishment of the USDA/ARS Children's Nutrition Research Center at Baylor College of Medicine and Texas Children's Hospital in 1978.

Nichols BL.

J Nutr. 2009 Jan;139(1):188-91. doi: 10.3945/jn.108.092627. Epub 2008 Dec 4.

PMID:
19056811
46.

Luminal starch substrate "brake" on maltase-glucoamylase activity is located within the glucoamylase subunit.

Quezada-Calvillo R, Sim L, Ao Z, Hamaker BR, Quaroni A, Brayer GD, Sterchi EE, Robayo-Torres CC, Rose DR, Nichols BL.

J Nutr. 2008 Apr;138(4):685-92.

PMID:
18356321
47.

Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity.

Sim L, Quezada-Calvillo R, Sterchi EE, Nichols BL, Rose DR.

J Mol Biol. 2008 Jan 18;375(3):782-92. Epub 2007 Nov 1.

PMID:
18036614
48.

Foreign-trained nurses in US healthcare delivery.

Nichols BL, Gessert CE, Davis CR.

Am J Public Health. 2007 Dec;97(12):2120; author reply 2120-1. Epub 2007 Oct 30. No abstract available.

49.

Indicators of normal carbohydrate digestion in children.

Nichols BL.

J Pediatr Gastroenterol Nutr. 2007 Aug;45(2):176-7. No abstract available.

PMID:
17667711
50.

Luminal substrate "brake" on mucosal maltase-glucoamylase activity regulates total rate of starch digestion to glucose.

Quezada-Calvillo R, Robayo-Torres CC, Ao Z, Hamaker BR, Quaroni A, Brayer GD, Sterchi EE, Baker SS, Nichols BL.

J Pediatr Gastroenterol Nutr. 2007 Jul;45(1):32-43.

PMID:
17592362

Supplemental Content

Loading ...
Support Center