Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 15

1.

Low-dimensional dynamical characterization of human performance of cancer patients using motion data.

Hasnain Z, Li M, Dorff T, Quinn D, Ueno NT, Yennu S, Kolatkar A, Shahabi C, Nocera L, Nieva J, Kuhn P, Newton PK.

Clin Biomech (Bristol, Avon). 2018 Jul;56:61-69. doi: 10.1016/j.clinbiomech.2018.05.007. Epub 2018 May 18.

PMID:
29803824
2.

Chemotherapeutic Dose Scheduling Based on Tumor Growth Rates Provides a Case for Low-Dose Metronomic High-Entropy Therapies.

West J, Newton PK.

Cancer Res. 2017 Dec 1;77(23):6717-6728. doi: 10.1158/0008-5472.CAN-17-1120. Epub 2017 Oct 6.

3.

The prisoner's dilemma as a cancer model.

West J, Hasnain Z, Mason J, Newton PK.

Converg Sci Phys Oncol. 2016 Sep;2(3). pii: 035002. doi: 10.1088/2057-1739/2/3/035002. Epub 2016 Jul 4.

4.

Critical behavior of subcellular density organization during neutrophil activation and migration.

Baker-Groberg SM, Phillips KG, Healy LD, Itakura A, Porter JE, Newton PK, Nan X, McCarty OJ.

Cell Mol Bioeng. 2015 Dec 1;8(4):543-552. Epub 2015 Jun 3.

5.

Spatiotemporal progression of metastatic breast cancer: a Markov chain model highlighting the role of early metastatic sites.

Newton PK, Mason J, Venkatappa N, Jochelson MS, Hurt B, Nieva J, Comen E, Norton L, Kuhn P.

NPJ Breast Cancer. 2015 Oct 21;1:15018. doi: 10.1038/npjbcancer.2015.18. eCollection 2015.

6.

Entropy, complexity, and Markov diagrams for random walk cancer models.

Newton PK, Mason J, Hurt B, Bethel K, Bazhenova L, Nieva J, Kuhn P.

Sci Rep. 2014 Dec 19;4:7558. doi: 10.1038/srep07558.

7.

p21-Activated kinase (PAK) regulates cytoskeletal reorganization and directional migration in human neutrophils.

Itakura A, Aslan JE, Kusanto BT, Phillips KG, Porter JE, Newton PK, Nan X, Insall RH, Chernoff J, McCarty OJ.

PLoS One. 2013 Sep 3;8(9):e73063. doi: 10.1371/journal.pone.0073063. eCollection 2013.

8.

Spreaders and sponges define metastasis in lung cancer: a Markov chain Monte Carlo mathematical model.

Newton PK, Mason J, Bethel K, Bazhenova L, Nieva J, Norton L, Kuhn P.

Cancer Res. 2013 May 1;73(9):2760-9. doi: 10.1158/0008-5472.CAN-12-4488. Epub 2013 Feb 27.

9.

Modeling and simulation of procoagulant circulating tumor cells in flow.

Lee AM, Tormoen GW, Kanso E, McCarty OJ, Newton PK.

Front Oncol. 2012 Sep 14;2:108. doi: 10.3389/fonc.2012.00108. eCollection 2012.

10.

A low-dimensional deformation model for cancer cells in flow.

Lee AM, Berny-Lang MA, Liao S, Kanso E, Kuhn P, McCarty OJ, Newton PK.

Phys Fluids (1994). 2012 Aug;24(8):81903. Epub 2012 Aug 30.

11.

A stochastic Markov chain model to describe lung cancer growth and metastasis.

Newton PK, Mason J, Bethel K, Bazhenova LA, Nieva J, Kuhn P.

PLoS One. 2012;7(4):e34637. doi: 10.1371/journal.pone.0034637. Epub 2012 Apr 27.

12.

Scaling laws at nonlinear Schrödinger defect sites.

Newton PK, O'Connor M.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Apr;53(4):3442-3447. No abstract available.

PMID:
9964654
13.

Unsteady models for the nonlinear evolution of the mixing layer.

Meiburg E, Newton PK, Raju N, Ruetsch G.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Aug;52(2):1639-1657. No abstract available.

PMID:
9963584
14.

Escape from Kolmogorov-Arnold-Moser regions and breakdown of uniform rotation.

Newton PK.

Phys Rev A Gen Phys. 1989 Sep 15;40(6):3254-3264. No abstract available.

PMID:
9902533
15.

Chaos in Rayleigh-BĂ©nard convection with external driving.

Newton PK.

Phys Rev A Gen Phys. 1988 Feb 1;37(3):932-934. No abstract available.

PMID:
9899737

Supplemental Content

Loading ...
Support Center