Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 47

1.

SopF, a phosphoinositide binding effector, promotes the stability of the nascent Salmonella-containing vacuole.

Lau N, Haeberle AL, O'Keeffe BJ, Latomanski EA, Celli J, Newton HJ, Knodler LA.

PLoS Pathog. 2019 Jul 24;15(7):e1007959. doi: 10.1371/journal.ppat.1007959. eCollection 2019 Jul.

2.

Taming the Triskelion: Bacterial Manipulation of Clathrin.

Latomanski EA, Newton HJ.

Microbiol Mol Biol Rev. 2019 Feb 27;83(2). pii: e00058-18. doi: 10.1128/MMBR.00058-18. Print 2019 May 15. Review.

PMID:
30814130
3.

Genetic Manipulation of Non-pneumophila Legionella: Protocols Developed for Legionella longbeachae.

Korevaar E, Khoo CA, Newton HJ.

Methods Mol Biol. 2019;1921:145-157. doi: 10.1007/978-1-4939-9048-1_9.

PMID:
30694490
4.

De novo NAD synthesis is required for intracellular replication of Coxiella burnetii, the causative agent of the neglected zoonotic disease Q fever.

Bitew MA, Khoo CA, Neha N, De Souza DP, Tull D, Wawegama NK, Newton HJ, Sansom FM.

J Biol Chem. 2018 Nov 30;293(48):18636-18645. doi: 10.1074/jbc.RA118.005190. Epub 2018 Oct 12.

PMID:
30315113
5.

Editorial: Biology and Pathogenesis of Legionella.

Newton HJ, Hartland EL, Machner MP.

Front Cell Infect Microbiol. 2018 Sep 19;8:328. doi: 10.3389/fcimb.2018.00328. eCollection 2018. No abstract available.

6.

Interaction between autophagic vesicles and the Coxiella-containing vacuole requires CLTC (clathrin heavy chain).

Latomanski EA, Newton HJ.

Autophagy. 2018;14(10):1710-1725. doi: 10.1080/15548627.2018.1483806. Epub 2018 Jul 29.

7.

Methionine biosynthesis and transport are functionally redundant for the growth and virulence of Salmonella Typhimurium.

Husna AU, Wang N, Cobbold SA, Newton HJ, Hocking DM, Wilksch JJ, Scott TA, Davies MR, Hinton JC, Tree JJ, Lithgow T, McConville MJ, Strugnell RA.

J Biol Chem. 2018 Jun 15;293(24):9506-9519. doi: 10.1074/jbc.RA118.002592. Epub 2018 May 2.

8.

Dot/Icm-Translocated Proteins Important for Biogenesis of the Coxiella burnetii-Containing Vacuole Identified by Screening of an Effector Mutant Sublibrary.

Crabill E, Schofield WB, Newton HJ, Goodman AL, Roy CR.

Infect Immun. 2018 Mar 22;86(4). pii: e00758-17. doi: 10.1128/IAI.00758-17. Print 2018 Apr.

9.

A Farnesylated Coxiella burnetii Effector Forms a Multimeric Complex at the Mitochondrial Outer Membrane during Infection.

Fielden LF, Moffatt JH, Kang Y, Baker MJ, Khoo CA, Roy CR, Stojanovski D, Newton HJ.

Infect Immun. 2017 Apr 21;85(5). pii: e01046-16. doi: 10.1128/IAI.01046-16. Print 2017 May.

10.

Beginning to Understand the Role of the Type IV Secretion System Effector Proteins in Coxiella burnetii Pathogenesis.

Lührmann A, Newton HJ, Bonazzi M.

Curr Top Microbiol Immunol. 2017;413:243-268. doi: 10.1007/978-3-319-75241-9_10. Review.

PMID:
29536362
11.

The Effector Cig57 Hijacks FCHO-Mediated Vesicular Trafficking to Facilitate Intracellular Replication of Coxiella burnetii.

Latomanski EA, Newton P, Khoo CA, Newton HJ.

PLoS Pathog. 2016 Dec 21;12(12):e1006101. doi: 10.1371/journal.ppat.1006101. eCollection 2016 Dec.

12.

Legionella longbeachae Is Immunologically Silent and Highly Virulent In Vivo.

Massis LM, Assis-Marques MA, Castanheira FV, Capobianco YJ, Balestra AC, Escoll P, Wood RE, Manin GZ, Correa VM, Alves-Filho JC, Cunha FQ, Buchrieser C, Borges MC, Newton HJ, Zamboni DS.

J Infect Dis. 2017 Feb 1;215(3):440-451. doi: 10.1093/infdis/jiw560.

PMID:
27932612
13.

Erratum for Kohler et al., Effector Protein Cig2 Decreases Host Tolerance of Infection by Directing Constitutive Fusion of Autophagosomes with the Coxiella-Containing Vacuole.

Kohler LJ, Reed SC, Sarraf SA, Arteaga DD, Newton HJ, Roy CR.

MBio. 2016 Sep 6;7(5). pii: e01327-16. doi: 10.1128/mBio.01327-16. No abstract available.

14.

Targeting mitochondria: how intravacuolar bacterial pathogens manipulate mitochondria.

Fielden LF, Kang Y, Newton HJ, Stojanovski D.

Cell Tissue Res. 2017 Jan;367(1):141-154. doi: 10.1007/s00441-016-2475-x. Epub 2016 Aug 12. Review.

PMID:
27515462
15.
17.

Murine Alveolar Macrophages Are Highly Susceptible to Replication of Coxiella burnetii Phase II In Vitro.

Fernandes TD, Cunha LD, Ribeiro JM, Massis LM, Lima-Junior DS, Newton HJ, Zamboni DS.

Infect Immun. 2016 Aug 19;84(9):2439-48. doi: 10.1128/IAI.00411-16. Print 2016 Sep.

18.

Inhibition of inflammasome activation by Coxiella burnetii type IV secretion system effector IcaA.

Cunha LD, Ribeiro JM, Fernandes TD, Massis LM, Khoo CA, Moffatt JH, Newton HJ, Roy CR, Zamboni DS.

Nat Commun. 2015 Dec 21;6:10205. doi: 10.1038/ncomms10205.

19.
20.

Coxiella burnetii: turning hostility into a home.

Moffatt JH, Newton P, Newton HJ.

Cell Microbiol. 2015 May;17(5):621-31. doi: 10.1111/cmi.12432. Epub 2015 Mar 30. Review.

PMID:
25728389
21.

Post-modern pathogens: surprising activities of translocated effectors from E. coli and Legionella.

Pearson JS, Zhang Y, Newton HJ, Hartland EL.

Curr Opin Microbiol. 2015 Feb;23:73-9. doi: 10.1016/j.mib.2014.11.005. Epub 2014 Nov 25. Review.

PMID:
25461576
22.

A screen of Coxiella burnetii mutants reveals important roles for Dot/Icm effectors and host autophagy in vacuole biogenesis.

Newton HJ, Kohler LJ, McDonough JA, Temoche-Diaz M, Crabill E, Hartland EL, Roy CR.

PLoS Pathog. 2014 Jul 31;10(7):e1004286. doi: 10.1371/journal.ppat.1004286. eCollection 2014 Jul.

23.

Multiple ecto-nucleoside triphosphate diphosphohydrolases facilitate intracellular replication of Legionella pneumophila.

Riedmaier P, Sansom FM, Sofian T, Beddoe T, Schuelein R, Newton HJ, Hartland EL.

Biochem J. 2014 Sep 1;462(2):279-89. doi: 10.1042/BJ20130923.

PMID:
24957128
24.

Host pathways important for Coxiella burnetii infection revealed by genome-wide RNA interference screening.

McDonough JA, Newton HJ, Klum S, Swiss R, Agaisse H, Roy CR.

MBio. 2013 Jan 29;4(1):e00606-12. doi: 10.1128/mBio.00606-12.

25.

Effector protein translocation by the Coxiella burnetii Dot/Icm type IV secretion system requires endocytic maturation of the pathogen-occupied vacuole.

Newton HJ, McDonough JA, Roy CR.

PLoS One. 2013;8(1):e54566. doi: 10.1371/journal.pone.0054566. Epub 2013 Jan 17.

26.

The role of Rab GTPases in the transport of vacuoles containing Legionella pneumophila and Coxiella burnetii.

Hardiman CA, McDonough JA, Newton HJ, Roy CR.

Biochem Soc Trans. 2012 Dec 1;40(6):1353-9. doi: 10.1042/BST20120167. Review.

PMID:
23176480
27.

Coxiella burnetii secretion systems.

McDonough JA, Newton HJ, Roy CR.

Adv Exp Med Biol. 2012;984:171-97. doi: 10.1007/978-94-007-4315-1_9. Review.

PMID:
22711632
28.

The Coxiella burnetii Dot/Icm system creates a comfortable home through lysosomal renovation.

Newton HJ, Roy CR.

MBio. 2011 Oct 18;2(5). pii: e00226-11. doi: 10.1128/mBio.00226-11. Print 2011.

29.

The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication.

Carey KL, Newton HJ, Lührmann A, Roy CR.

PLoS Pathog. 2011 May;7(5):e1002056. doi: 10.1371/journal.ppat.1002056. Epub 2011 May 26.

30.

Legionella pneumophila strain 130b possesses a unique combination of type IV secretion systems and novel Dot/Icm secretion system effector proteins.

Schroeder GN, Petty NK, Mousnier A, Harding CR, Vogrin AJ, Wee B, Fry NK, Harrison TG, Newton HJ, Thomson NR, Beatson SA, Dougan G, Hartland EL, Frankel G.

J Bacteriol. 2010 Nov;192(22):6001-16. doi: 10.1128/JB.00778-10. Epub 2010 Sep 10.

31.

Two novel point mutations in clinical Staphylococcus aureus reduce linezolid susceptibility and switch on the stringent response to promote persistent infection.

Gao W, Chua K, Davies JK, Newton HJ, Seemann T, Harrison PF, Holmes NE, Rhee HW, Hong JI, Hartland EL, Stinear TP, Howden BP.

PLoS Pathog. 2010 Jun 10;6(6):e1000944. doi: 10.1371/journal.ppat.1000944.

32.

The type III effectors NleE and NleB from enteropathogenic E. coli and OspZ from Shigella block nuclear translocation of NF-kappaB p65.

Newton HJ, Pearson JS, Badea L, Kelly M, Lucas M, Holloway G, Wagstaff KM, Dunstone MA, Sloan J, Whisstock JC, Kaper JB, Robins-Browne RM, Jans DA, Frankel G, Phillips AD, Coulson BS, Hartland EL.

PLoS Pathog. 2010 May 13;6(5):e1000898. doi: 10.1371/journal.ppat.1000898.

33.

Molecular pathogenesis of infections caused by Legionella pneumophila.

Newton HJ, Ang DK, van Driel IR, Hartland EL.

Clin Microbiol Rev. 2010 Apr;23(2):274-98. doi: 10.1128/CMR.00052-09. Review.

34.

The Legionella pneumophila F-box protein Lpp2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication.

Lomma M, Dervins-Ravault D, Rolando M, Nora T, Newton HJ, Sansom FM, Sahr T, Gomez-Valero L, Jules M, Hartland EL, Buchrieser C.

Cell Microbiol. 2010 Sep 1;12(9):1272-91. doi: 10.1111/j.1462-5822.2010.01467.x. Epub 2010 Mar 25.

PMID:
20345489
35.

Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires' disease.

Cazalet C, Gomez-Valero L, Rusniok C, Lomma M, Dervins-Ravault D, Newton HJ, Sansom FM, Jarraud S, Zidane N, Ma L, Bouchier C, Etienne J, Hartland EL, Buchrieser C.

PLoS Genet. 2010 Feb 19;6(2):e1000851. doi: 10.1371/journal.pgen.1000851.

36.

Molecular Detection of Legionella: Moving on From mip.

Yong SF, Tan SH, Wee J, Tee JJ, Sansom FM, Newton HJ, Hartland EL.

Front Microbiol. 2010 Nov 11;1:123. doi: 10.3389/fmicb.2010.00123. eCollection 2010.

37.

Shiga toxin-producing Escherichia coli strains negative for locus of enterocyte effacement.

Newton HJ, Sloan J, Bulach DM, Seemann T, Allison CC, Tauschek M, Robins-Browne RM, Paton JC, Whittam TS, Paton AW, Hartland EL.

Emerg Infect Dis. 2009 Mar;15(3):372-80. doi: 10.3201/eid1503.080631.

38.

Significant role for ladC in initiation of Legionella pneumophila infection.

Newton HJ, Sansom FM, Dao J, Cazalet C, Bruggemann H, Albert-Weissenberger C, Buchrieser C, Cianciotto NP, Hartland EL.

Infect Immun. 2008 Jul;76(7):3075-85. doi: 10.1128/IAI.00209-08. Epub 2008 Apr 21.

39.

Enzymatic properties of an ecto-nucleoside triphosphate diphosphohydrolase from Legionella pneumophila: substrate specificity and requirement for virulence.

Sansom FM, Riedmaier P, Newton HJ, Dunstone MA, Müller CE, Stephan H, Byres E, Beddoe T, Rossjohn J, Cowan PJ, d'Apice AJ, Robson SC, Hartland EL.

J Biol Chem. 2008 May 9;283(19):12909-18. doi: 10.1074/jbc.M801006200. Epub 2008 Mar 12.

40.

Sel1 repeat protein LpnE is a Legionella pneumophila virulence determinant that influences vacuolar trafficking.

Newton HJ, Sansom FM, Dao J, McAlister AD, Sloan J, Cianciotto NP, Hartland EL.

Infect Immun. 2007 Dec;75(12):5575-85. Epub 2007 Sep 24.

41.

A bacterial ecto-triphosphate diphosphohydrolase similar to human CD39 is essential for intracellular multiplication of Legionella pneumophila.

Sansom FM, Newton HJ, Crikis S, Cianciotto NP, Cowan PJ, d'Apice AJ, Hartland EL.

Cell Microbiol. 2007 Aug;9(8):1922-35. Epub 2007 Mar 26.

PMID:
17388784
43.

Contribution of long polar fimbriae to the virulence of rabbit-specific enteropathogenic Escherichia coli.

Newton HJ, Sloan J, Bennett-Wood V, Adams LM, Robins-Browne RM, Hartland EL.

Infect Immun. 2004 Mar;72(3):1230-9.

44.

Pattern of plasma luteinizing hormone in the cyclic cow: dependence upon the period of the cycle.

Rahe CH, Owens RE, Fleeger JL, Newton HJ, Harms PG.

Endocrinology. 1980 Aug;107(2):498-503.

PMID:
7190094
45.

A therapeutic community for adolescents.

Newton HJ, Sovak RJ.

Hosp Community Psychiatry. 1968 Apr;19(4):106-7. No abstract available.

PMID:
5640936
46.

The comprehensive mental health center: uncharted horizons for inpatient services.

Newton HJ.

Am J Psychiatry. 1967 Apr;123(10):1210-9. No abstract available.

PMID:
6021692
47.

Supplemental Content

Loading ...
Support Center