Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 29

1.

Metabolic Basis for Mutualism between Gut Bacteria and Its Impact on the Drosophila melanogaster Host.

Sommer AJ, Newell PD.

Appl Environ Microbiol. 2019 Jan 9;85(2). pii: e01882-18. doi: 10.1128/AEM.01882-18. Print 2019 Jan 15.

2.

A Metagenome-Wide Association Study and Arrayed Mutant Library Confirm Acetobacter Lipopolysaccharide Genes Are Necessary for Association with Drosophila melanogaster.

White KM, Matthews MK, Hughes RC, Sommer AJ, Griffitts JS, Newell PD, Chaston JM.

G3 (Bethesda). 2018 Mar 28;8(4):1119-1127. doi: 10.1534/g3.117.300530.

3.

MAGNAMWAR: an R package for genome-wide association studies of bacterial orthologs.

Sexton CE, Smith HZ, Newell PD, Douglas AE, Chaston JM.

Bioinformatics. 2018 Jun 1;34(11):1951-1952. doi: 10.1093/bioinformatics/bty001.

4.

Spatiotemporally Heterogeneous Population Dynamics of Gut Bacteria Inferred from Fecal Time Series Data.

Inamine H, Ellner SP, Newell PD, Luo Y, Buchon N, Douglas AE.

MBio. 2018 Jan 9;9(1). pii: e01453-17. doi: 10.1128/mBio.01453-17.

5.

Draft Genome Sequence of Lactobacillus paracasei DmW181, a Bacterium Isolated from Wild Drosophila.

Hammer AJ, Walters A, Carroll C, Newell PD, Chaston JM.

Genome Announc. 2017 Jul 6;5(27). pii: e00545-17. doi: 10.1128/genomeA.00545-17.

6.

A genomic investigation of ecological differentiation between free-living and Drosophila-associated bacteria.

Winans NJ, Walter A, Chouaia B, Chaston JM, Douglas AE, Newell PD.

Mol Ecol. 2017 Sep;26(17):4536-4550. doi: 10.1111/mec.14232. Epub 2017 Jul 24.

7.

Genome Sequence of Weissella cibaria DmW_103, Isolated from Wild Drosophila.

Ricks NJ, Carroll C, Walters A, Newell PD, Chaston JM.

Genome Announc. 2017 Jun 15;5(24). pii: e00512-17. doi: 10.1128/genomeA.00512-17.

8.

Genome Sequence of Leuconostoc citreum DmW_111, Isolated from Wild Drosophila.

Wright SM, Carroll C, Walters A, Newell PD, Chaston JM.

Genome Announc. 2017 Jun 15;5(24). pii: e00507-17. doi: 10.1128/genomeA.00507-17.

9.

Physiological responses of insects to microbial fermentation products: Insights from the interactions between Drosophila and acetic acid.

Kim G, Huang JH, McMullen JG 2nd, Newell PD, Douglas AE.

J Insect Physiol. 2018 Apr;106(Pt 1):13-19. doi: 10.1016/j.jinsphys.2017.05.005. Epub 2017 May 15.

10.

Rearing the Fruit Fly Drosophila melanogaster Under Axenic and Gnotobiotic Conditions.

Koyle ML, Veloz M, Judd AM, Wong AC, Newell PD, Douglas AE, Chaston JM.

J Vis Exp. 2016 Jul 30;(113). doi: 10.3791/54219.

12.

Host Genetic Control of the Microbiota Mediates the Drosophila Nutritional Phenotype.

Chaston JM, Dobson AJ, Newell PD, Douglas AE.

Appl Environ Microbiol. 2015 Nov 13;82(2):671-9. doi: 10.1128/AEM.03301-15. Print 2016 Jan 15.

13.

Corrigendum: Host genetic determinants of microbiota-dependent nutrition revealed by genome-wide analysis of Drosophila melanogaster.

Dobson AJ, Chaston JM, Newell PD, Donahue L, Hermann SL, Sannino DR, Westmiller S, Wong AC, Clark AG, Lazzaro BP, Douglas AE.

Nat Commun. 2015 May 15;6:7296. doi: 10.1038/ncomms8296. No abstract available.

PMID:
25976209
14.

Host genetic determinants of microbiota-dependent nutrition revealed by genome-wide analysis of Drosophila melanogaster.

Dobson AJ, Chaston JM, Newell PD, Donahue L, Hermann SL, Sannino DR, Westmiller S, Wong AC, Clark AG, Lazzaro BP, Douglas AE.

Nat Commun. 2015 Feb 18;6:6312. doi: 10.1038/ncomms7312. Erratum in: Nat Commun. 2015;6:7296.

15.

In vivo function and comparative genomic analyses of the Drosophila gut microbiota identify candidate symbiosis factors.

Newell PD, Chaston JM, Wang Y, Winans NJ, Sannino DR, Wong AC, Dobson AJ, Kagle J, Douglas AE.

Front Microbiol. 2014 Nov 4;5:576. doi: 10.3389/fmicb.2014.00576. eCollection 2014.

16.

Metagenome-wide association of microbial determinants of host phenotype in Drosophila melanogaster.

Chaston JM, Newell PD, Douglas AE.

MBio. 2014 Sep 30;5(5):e01631-14. doi: 10.1128/mBio.01631-14.

17.

Structural features of the Pseudomonas fluorescens biofilm adhesin LapA required for LapG-dependent cleavage, biofilm formation, and cell surface localization.

Boyd CD, Smith TJ, El-Kirat-Chatel S, Newell PD, DufrĂȘne YF, O'Toole GA.

J Bacteriol. 2014 Aug;196(15):2775-88. doi: 10.1128/JB.01629-14. Epub 2014 May 16.

18.

A Small-Group Activity Introducing the Use and Interpretation of BLAST.

Newell PD, Fricker AD, Roco CA, Chandrangsu P, Merkel SM.

J Microbiol Biol Educ. 2013 Dec 2;14(2):238-43. doi: 10.1128/jmbe.v14i2.637. eCollection 2013.

19.

Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster.

Newell PD, Douglas AE.

Appl Environ Microbiol. 2014 Jan;80(2):788-96. doi: 10.1128/AEM.02742-13. Epub 2013 Nov 15.

20.

Shared metabolic pathways in a coevolved insect-bacterial symbiosis.

Russell CW, Bouvaine S, Newell PD, Douglas AE.

Appl Environ Microbiol. 2013 Oct;79(19):6117-23. doi: 10.1128/AEM.01543-13. Epub 2013 Jul 26.

21.

Atomic force and super-resolution microscopy support a role for LapA as a cell-surface biofilm adhesin of Pseudomonas fluorescens.

Ivanov IE, Boyd CD, Newell PD, Schwartz ME, Turnbull L, Johnson MS, Whitchurch CB, O'Toole GA, Camesano TA.

Res Microbiol. 2012 Nov-Dec;163(9-10):685-91. doi: 10.1016/j.resmic.2012.10.001. Epub 2012 Oct 9.

22.

Systematic analysis of diguanylate cyclases that promote biofilm formation by Pseudomonas fluorescens Pf0-1.

Newell PD, Yoshioka S, Hvorecny KL, Monds RD, O'Toole GA.

J Bacteriol. 2011 Sep;193(18):4685-98. doi: 10.1128/JB.05483-11. Epub 2011 Jul 15.

23.

Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis.

Navarro MV, Newell PD, Krasteva PV, Chatterjee D, Madden DR, O'Toole GA, Sondermann H.

PLoS Biol. 2011 Feb 1;9(2):e1000588. doi: 10.1371/journal.pbio.1000588.

24.

A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage.

Newell PD, Boyd CD, Sondermann H, O'Toole GA.

PLoS Biol. 2011 Feb 1;9(2):e1000587. doi: 10.1371/journal.pbio.1000587.

25.

Di-adenosine tetraphosphate (Ap4A) metabolism impacts biofilm formation by Pseudomonas fluorescens via modulation of c-di-GMP-dependent pathways.

Monds RD, Newell PD, Wagner JC, Schwartzman JA, Lu W, Rabinowitz JD, O'Toole GA.

J Bacteriol. 2010 Jun;192(12):3011-23. doi: 10.1128/JB.01571-09. Epub 2010 Feb 12.

26.

LapD is a bis-(3',5')-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1.

Newell PD, Monds RD, O'Toole GA.

Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3461-6. doi: 10.1073/pnas.0808933106. Epub 2009 Feb 13.

28.

Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1.

Monds RD, Newell PD, Schwartzman JA, O'Toole GA.

Appl Environ Microbiol. 2006 Mar;72(3):1910-24.

29.

Gelatinous adenocarcinoma of the cervix uteri.

NELSON HM, NEWELL PD.

Am J Surg. 1951 Apr;81(4):467-9. No abstract available.

PMID:
14819504

Supplemental Content

Loading ...
Support Center