Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 116

1.

A nematode sterol C4α-methyltransferase catalyzes a new methylation reaction responsible for sterol diversity.

Zhou W, Fisher PM, Vanderloop BH, Shen Y, Shi H, Maldonado AJ, Leaver DJ, Nes WD.

J Lipid Res. 2019 Sep 23. pii: jlr.RA119000317. doi: 10.1194/jlr.RA119000317. [Epub ahead of print]

2.

Isavuconazole and voriconazole inhibition of sterol 14α-demethylases (CYP51) from Aspergillus fumigatus and Homo sapiens.

Warrilow AGS, Parker JE, Price CL, Rolley NJ, Nes WD, Kelly DE, Kelly SL.

Int J Antimicrob Agents. 2019 Oct;54(4):449-455. doi: 10.1016/j.ijantimicag.2019.07.011. Epub 2019 Jul 13.

PMID:
31310805
3.

Steroidal antibiotics are antimetabolites of Acanthamoeba steroidogenesis with phylogenetic implications.

Zhou W, Ramos E, Zhu X, Fisher PM, Kidane ME, Vanderloop BH, Thomas CD, Yan J, Singha U, Chaudhuri M, Nagel MT, Nes WD.

J Lipid Res. 2019 May;60(5):981-994. doi: 10.1194/jlr.M091587. Epub 2019 Feb 1.

4.

Sterol 14α-Demethylase Structure-Based Optimization of Drug Candidates for Human Infections with the Protozoan Trypanosomatidae.

Friggeri L, Hargrove TY, Rachakonda G, Blobaum AL, Fisher P, de Oliveira GM, da Silva CF, Soeiro MNC, Nes WD, Lindsley CW, Villalta F, Guengerich FP, Lepesheva GI.

J Med Chem. 2018 Dec 13;61(23):10910-10921. doi: 10.1021/acs.jmedchem.8b01671. Epub 2018 Nov 30.

5.

Binding of a physiological substrate causes large-scale conformational reorganization in cytochrome P450 51.

Hargrove TY, Wawrzak Z, Fisher PM, Child SA, Nes WD, Guengerich FP, Waterman MR, Lepesheva GI.

J Biol Chem. 2018 Dec 14;293(50):19344-19353. doi: 10.1074/jbc.RA118.005850. Epub 2018 Oct 16.

PMID:
30327430
6.

Enzymatic chokepoints and synergistic drug targets in the sterol biosynthesis pathway of Naegleria fowleri.

Zhou W, Debnath A, Jennings G, Hahn HJ, Vanderloop BH, Chaudhuri M, Nes WD, Podust LM.

PLoS Pathog. 2018 Sep 13;14(9):e1007245. doi: 10.1371/journal.ppat.1007245. eCollection 2018 Sep.

7.

Functional importance for developmental regulation of sterol biosynthesis in Acanthamoeba castellanii.

Zhou W, Warrilow AGS, Thomas CD, Ramos E, Parker JE, Price CL, Vanderloop BH, Fisher PM, Loftis MD, Kelly DE, Kelly SL, Nes WD.

Biochim Biophys Acta Mol Cell Biol Lipids. 2018 Oct;1863(10):1164-1178. doi: 10.1016/j.bbalip.2018.07.004. Epub 2018 Jul 22.

8.

Sterol 14α-Demethylase Structure-Based Design of VNI (( R)- N-(1-(2,4-Dichlorophenyl)-2-(1 H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide)) Derivatives To Target Fungal Infections: Synthesis, Biological Evaluation, and Crystallographic Analysis.

Friggeri L, Hargrove TY, Wawrzak Z, Blobaum AL, Rachakonda G, Lindsley CW, Villalta F, Nes WD, Botta M, Guengerich FP, Lepesheva GI.

J Med Chem. 2018 Jul 12;61(13):5679-5691. doi: 10.1021/acs.jmedchem.8b00641. Epub 2018 Jun 25.

9.

CYP51 is an essential drug target for the treatment of primary amoebic meningoencephalitis (PAM).

Debnath A, Calvet CM, Jennings G, Zhou W, Aksenov A, Luth MR, Abagyan R, Nes WD, McKerrow JH, Podust LM.

PLoS Negl Trop Dis. 2017 Dec 28;11(12):e0006104. doi: 10.1371/journal.pntd.0006104. eCollection 2017 Dec.

10.

Sterol methyltransferase a target for anti-amoeba therapy: towards transition state analog and suicide substrate drug design.

Kidane ME, Vanderloop BH, Zhou W, Thomas CD, Ramos E, Singha U, Chaudhuri M, Nes WD.

J Lipid Res. 2017 Dec;58(12):2310-2323. doi: 10.1194/jlr.M079418. Epub 2017 Oct 17.

11.

The Tetrazole VT-1161 Is a Potent Inhibitor of Trichophyton rubrum through Its Inhibition of T. rubrum CYP51.

Warrilow AGS, Parker JE, Price CL, Garvey EP, Hoekstra WJ, Schotzinger RJ, Wiederhold NP, Nes WD, Kelly DE, Kelly SL.

Antimicrob Agents Chemother. 2017 Jun 27;61(7). pii: e00333-17. doi: 10.1128/AAC.00333-17. Print 2017 Jul.

12.

Azole Antifungal Sensitivity of Sterol 14α-Demethylase (CYP51) and CYP5218 from Malassezia globosa.

Warrilow AG, Price CL, Parker JE, Rolley NJ, Smyrniotis CJ, Hughes DD, Thoss V, Nes WD, Kelly DE, Holman TR, Kelly SL.

Sci Rep. 2016 Jun 13;6:27690. doi: 10.1038/srep27690.

13.

The Investigational Drug VT-1129 Is a Highly Potent Inhibitor of Cryptococcus Species CYP51 but Only Weakly Inhibits the Human Enzyme.

Warrilow AG, Parker JE, Price CL, Nes WD, Garvey EP, Hoekstra WJ, Schotzinger RJ, Kelly DE, Kelly SL.

Antimicrob Agents Chemother. 2016 Jul 22;60(8):4530-8. doi: 10.1128/AAC.00349-16. Print 2016 Aug.

14.

Fluorinated Sterols Are Suicide Inhibitors of Ergosterol Biosynthesis and Growth in Trypanosoma brucei.

Leaver DJ, Patkar P, Singha UK, Miller MB, Haubrich BA, Chaudhuri M, Nes WD.

Chem Biol. 2015 Oct 22;22(10):1374-83. doi: 10.1016/j.chembiol.2015.08.017.

15.

In Vitro Biochemical Study of CYP51-Mediated Azole Resistance in Aspergillus fumigatus.

Warrilow AG, Parker JE, Price CL, Nes WD, Kelly SL, Kelly DE.

Antimicrob Agents Chemother. 2015 Dec;59(12):7771-8. doi: 10.1128/AAC.01806-15. Epub 2015 Oct 12.

16.

2014 G.J. Schroepfer Jr. Memorial AOCS Sterol Symposium: Recent Advances in Sterol Research.

Moreau RA, Bach TJ, Nes WD, Parish EJ, Moser JK, Nyström L.

Lipids. 2015 Aug;50(8):719-20. doi: 10.1007/s11745-015-4051-7. Epub 2015 Jul 26. No abstract available.

PMID:
26210488
17.

Azole Antifungal Agents To Treat the Human Pathogens Acanthamoeba castellanii and Acanthamoeba polyphaga through Inhibition of Sterol 14α-Demethylase (CYP51).

Lamb DC, Warrilow AG, Rolley NJ, Parker JE, Nes WD, Smith SN, Kelly DE, Kelly SL.

Antimicrob Agents Chemother. 2015 Aug;59(8):4707-13. doi: 10.1128/AAC.00476-15. Epub 2015 May 26.

18.

VFV as a New Effective CYP51 Structure-Derived Drug Candidate for Chagas Disease and Visceral Leishmaniasis.

Lepesheva GI, Hargrove TY, Rachakonda G, Wawrzak Z, Pomel S, Cojean S, Nde PN, Nes WD, Locuson CW, Calcutt MW, Waterman MR, Daniels JS, Loiseau PM, Villalta F.

J Infect Dis. 2015 Nov 1;212(9):1439-48. doi: 10.1093/infdis/jiv228. Epub 2015 Apr 15.

19.

Novel Substrate Specificity and Temperature-Sensitive Activity of Mycosphaerella graminicola CYP51 Supported by the Native NADPH Cytochrome P450 Reductase.

Price CL, Warrilow AG, Parker JE, Mullins JG, Nes WD, Kelly DE, Kelly SL.

Appl Environ Microbiol. 2015 May 15;81(10):3379-86. doi: 10.1128/AEM.03965-14. Epub 2015 Mar 6.

20.

Identification of natural RORγ ligands that regulate the development of lymphoid cells.

Santori FR, Huang P, van de Pavert SA, Douglass EF Jr, Leaver DJ, Haubrich BA, Keber R, Lorbek G, Konijn T, Rosales BN, Rozman D, Horvat S, Rahier A, Mebius RE, Rastinejad F, Nes WD, Littman DR.

Cell Metab. 2015 Feb 3;21(2):286-298. doi: 10.1016/j.cmet.2015.01.004.

21.

Discovery of an ergosterol-signaling factor that regulates Trypanosoma brucei growth.

Haubrich BA, Singha UK, Miller MB, Nes CR, Anyatonwu H, Lecordier L, Patkar P, Leaver DJ, Villalta F, Vanhollebeke B, Chaudhuri M, Nes WD.

J Lipid Res. 2015 Feb;56(2):331-41. doi: 10.1194/jlr.M054643. Epub 2014 Nov 25.

22.

Characterization, mutagenesis and mechanistic analysis of an ancient algal sterol C24-methyltransferase: Implications for understanding sterol evolution in the green lineage.

Haubrich BA, Collins EK, Howard AL, Wang Q, Snell WJ, Miller MB, Thomas CD, Pleasant SK, Nes WD.

Phytochemistry. 2015 May;113:64-72. doi: 10.1016/j.phytochem.2014.07.019. Epub 2014 Aug 15.

23.

Clotrimazole as a potent agent for treating the oomycete fish pathogen Saprolegnia parasitica through inhibition of sterol 14α-demethylase (CYP51).

Warrilow AG, Hull CM, Rolley NJ, Parker JE, Nes WD, Smith SN, Kelly DE, Kelly SL.

Appl Environ Microbiol. 2014 Oct;80(19):6154-66. doi: 10.1128/AEM.01195-14. Epub 2014 Aug 1.

24.

Both methylerythritol phosphate and mevalonate pathways contribute to biosynthesis of each of the major isoprenoid classes in young cotton seedlings.

Opitz S, Nes WD, Gershenzon J.

Phytochemistry. 2014 Feb;98:110-9. doi: 10.1016/j.phytochem.2013.11.010. Epub 2013 Dec 17.

PMID:
24359633
25.

C-24-methylation of 26-fluorocycloartenols by recombinant sterol C-24-methyltransferase from soybean: evidence for channel switching and its phylogenetic implications.

Patkar P, Haubrich BA, Qi M, Nguyen TT, Thomas CD, Nes WD.

Biochem J. 2013 Dec 1;456(2):253-62. doi: 10.1042/BJ20121818.

PMID:
23984880
26.

Evolutionarily conserved Delta(25(27))-olefin ergosterol biosynthesis pathway in the alga Chlamydomonas reinhardtii.

Miller MB, Haubrich BA, Wang Q, Snell WJ, Nes WD.

J Lipid Res. 2012 Aug;53(8):1636-45. doi: 10.1194/jlr.M027482. Epub 2012 May 16.

27.

Sterol C24-methyltransferase: Physio- and stereo-chemical features of the sterol C3 group required for catalytic competence.

Howard AL, Liu J, Elmegeed GA, Collins EK, Ganatra KS, Nwogwugwu CA, Nes WD.

Arch Biochem Biophys. 2012 May;521(1-2):43-50. doi: 10.1016/j.abb.2012.03.002. Epub 2012 Mar 14.

PMID:
22446159
28.

Novel sterol metabolic network of Trypanosoma brucei procyclic and bloodstream forms.

Nes CR, Singha UK, Liu J, Ganapathy K, Villalta F, Waterman MR, Lepesheva GI, Chaudhuri M, Nes WD.

Biochem J. 2012 Apr 1;443(1):267-77. doi: 10.1042/BJ20111849.

29.

Structural complex of sterol 14α-demethylase (CYP51) with 14α-methylenecyclopropyl-Delta7-24, 25-dihydrolanosterol.

Hargrove TY, Wawrzak Z, Liu J, Waterman MR, Nes WD, Lepesheva GI.

J Lipid Res. 2012 Feb;53(2):311-20. doi: 10.1194/jlr.M021865. Epub 2011 Nov 30.

30.

Biosynthesis of cholesterol and other sterols.

Nes WD.

Chem Rev. 2011 Oct 12;111(10):6423-51. doi: 10.1021/cr200021m. Epub 2011 Sep 8. Review. No abstract available.

31.

Effect of substrate features and mutagenesis of active site tyrosine residues on the reaction course catalysed by Trypanosoma brucei sterol C-24-methyltransferase.

Liu J, Ganapathy K, Wywial E, Bujnicki JM, Nwogwugwu CA, Nes WD.

Biochem J. 2011 Nov 1;439(3):413-22. doi: 10.1042/BJ20110865.

PMID:
21736559
32.

Substrate preferences and catalytic parameters determined by structural characteristics of sterol 14alpha-demethylase (CYP51) from Leishmania infantum.

Hargrove TY, Wawrzak Z, Liu J, Nes WD, Waterman MR, Lepesheva GI.

J Biol Chem. 2011 Jul 29;286(30):26838-48. doi: 10.1074/jbc.M111.237099. Epub 2011 May 31.

33.

Metabolic engineering of soybean affords improved phytosterol seed traits.

Neelakandan AK, Chamala S, Valliyodan B, Nes WD, Nguyen HT.

Plant Biotechnol J. 2012 Jan;10(1):12-9. doi: 10.1111/j.1467-7652.2011.00623.x. Epub 2011 May 9.

34.

Mechanism of binding of prothioconazole to Mycosphaerella graminicola CYP51 differs from that of other azole antifungals.

Parker JE, Warrilow AG, Cools HJ, Martel CM, Nes WD, Fraaije BA, Lucas JA, Kelly DE, Kelly SL.

Appl Environ Microbiol. 2011 Feb;77(4):1460-5. doi: 10.1128/AEM.01332-10. Epub 2010 Dec 17.

35.

Purification, characterization and inhibition of sterol C24-methyltransferase from Candida albicans.

Ganapathy K, Kanagasabai R, Nguyen TT, Nes WD.

Arch Biochem Biophys. 2011 Jan 15;505(2):194-201. doi: 10.1016/j.abb.2010.10.008. Epub 2010 Oct 12.

PMID:
20946868
36.

Molecular characterization and functional analysis of Glycine max sterol methyl transferase 2 genes involved in plant membrane sterol biosynthesis.

Neelakandan AK, Nguyen HT, Kumar R, Tran LS, Guttikonda SK, Quach TN, Aldrich DL, Nes WD, Nguyen HT.

Plant Mol Biol. 2010 Nov;74(4-5):503-18. doi: 10.1007/s11103-010-9692-6. Epub 2010 Sep 24.

PMID:
20865301
37.

Expression, purification, and characterization of Aspergillus fumigatus sterol 14-alpha demethylase (CYP51) isoenzymes A and B.

Warrilow AG, Melo N, Martel CM, Parker JE, Nes WD, Kelly SL, Kelly DE.

Antimicrob Agents Chemother. 2010 Oct;54(10):4225-34. doi: 10.1128/AAC.00316-10. Epub 2010 Jul 26.

38.

Azole binding properties of Candida albicans sterol 14-alpha demethylase (CaCYP51).

Warrilow AG, Martel CM, Parker JE, Melo N, Lamb DC, Nes WD, Kelly DE, Kelly SL.

Antimicrob Agents Chemother. 2010 Oct;54(10):4235-45. doi: 10.1128/AAC.00587-10. Epub 2010 Jul 12.

39.

Cloning, mechanistic and functional analysis of a fungal sterol C24-methyltransferase implicated in brassicasterol biosynthesis.

Pereira M, Song Z, Santos-Silva LK, Richards MH, Nguyen TT, Liu J, de Almeida Soares CM, da Silva Cruz AH, Ganapathy K, Nes WD.

Biochim Biophys Acta. 2010 Oct;1801(10):1163-74. doi: 10.1016/j.bbalip.2010.06.007. Epub 2010 Jul 17.

PMID:
20624480
40.

Steroidal triterpenes: design of substrate-based inhibitors of ergosterol and sitosterol synthesis.

Liu J, Nes WD.

Molecules. 2009 Nov 18;14(11):4690-706. doi: 10.3390/molecules14114690. Review.

41.

Crystal structures of Trypanosoma brucei sterol 14alpha-demethylase and implications for selective treatment of human infections.

Lepesheva GI, Park HW, Hargrove TY, Vanhollebeke B, Wawrzak Z, Harp JM, Sundaramoorthy M, Nes WD, Pays E, Chaudhuri M, Villalta F, Waterman MR.

J Biol Chem. 2010 Jan 15;285(3):1773-80. doi: 10.1074/jbc.M109.067470. Epub 2009 Nov 18.

42.

Cloning, functional expression and phylogenetic analysis of plant sterol 24C-methyltransferases involved in sitosterol biosynthesis.

Neelakandan AK, Song Z, Wang J, Richards MH, Wu X, Valliyodan B, Nguyen HT, Nes WD.

Phytochemistry. 2009 Dec;70(17-18):1982-98. doi: 10.1016/j.phytochem.2009.09.003. Epub 2009 Oct 8.

PMID:
19818974
43.

Cryptococcus neoformans Site-2 protease is required for virulence and survival in the presence of azole drugs.

Bien CM, Chang YC, Nes WD, Kwon-Chung KJ, Espenshade PJ.

Mol Microbiol. 2009 Nov;74(3):672-90. doi: 10.1111/j.1365-2958.2009.06895.x. Epub 2009 Oct 8.

44.

Indomethacin amides as a novel molecular scaffold for targeting Trypanosoma cruzi sterol 14alpha-demethylase.

Konkle ME, Hargrove TY, Kleshchenko YY, von Kries JP, Ridenour W, Uddin MJ, Caprioli RM, Marnett LJ, Nes WD, Villalta F, Waterman MR, Lepesheva GI.

J Med Chem. 2009 May 14;52(9):2846-53. doi: 10.1021/jm801643b.

45.

Sterol 24-C-methyltransferase: an enzymatic target for the disruption of ergosterol biosynthesis and homeostasis in Cryptococcus neoformans.

Nes WD, Zhou W, Ganapathy K, Liu J, Vatsyayan R, Chamala S, Hernandez K, Miranda M.

Arch Biochem Biophys. 2009 Jan 15;481(2):210-8. doi: 10.1016/j.abb.2008.11.003. Epub 2008 Nov 8.

PMID:
19014901
46.

CYP51: A major drug target in the cytochrome P450 superfamily.

Lepesheva GI, Hargrove TY, Kleshchenko Y, Nes WD, Villalta F, Waterman MR.

Lipids. 2008 Dec;43(12):1117-25. doi: 10.1007/s11745-008-3225-y. Epub 2008 Sep 4.

47.

Cyclobranol: a substrate for C25-methyl sterol side chains and potent mechanism-based inactivator of plant sterol methyltransferase.

Wang J, Nes WD.

Bioorg Med Chem Lett. 2008 Jul 15;18(14):3878-81. doi: 10.1016/j.bmcl.2008.06.044. Epub 2008 Jun 18.

PMID:
18590960
48.

Photoaffinity labeling and mutational analysis of 24-C-sterol methyltransferase defines the AdoMet binding site.

Jayasimha P, Nes WD.

Lipids. 2008 Aug;43(8):681-93. doi: 10.1007/s11745-008-3198-x. Epub 2008 Jun 18.

PMID:
18563465
49.

Yeast sterol C24-methyltransferase: role of highly conserved tyrosine-81 in catalytic competence studied by site-directed mutagenesis and thermodynamic analysis.

Nes WD, Jayasimha P, Song Z.

Arch Biochem Biophys. 2008 Sep 15;477(2):313-23. doi: 10.1016/j.abb.2008.05.016. Epub 2008 Jun 12.

PMID:
18555004
50.

Molecular probing of the Saccharomyces cerevisiae sterol 24-C methyltransferase reveals multiple amino acid residues involved with C2-transfer activity.

Ganapathy K, Jones CW, Stephens CM, Vatsyayan R, Marshall JA, Nes WD.

Biochim Biophys Acta. 2008 Jun-Jul;1781(6-7):344-51. doi: 10.1016/j.bbalip.2008.04.015. Epub 2008 May 8.

PMID:
18503783

Supplemental Content

Support Center