Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 86

1.

1q42.12q42.2 Deletion in a Child with Midline Defects and Hypoplasia of the Corpus Callosum.

Radha Rama Devi A, Ganapathy A, Mannan AU, Sabharanjak S, Naushad SM.

Mol Syndromol. 2019 May;10(3):161-166. doi: 10.1159/000496079. Epub 2019 Jan 16.

PMID:
31191205
2.

Staphylococcus debuckii sp. nov., a coagulase-negative species from bovine milk.

Naushad S, Kanevets U, Nobrega D, Carson D, Dufour S, Roy JP, Lewis PJ, Barkema HW.

Int J Syst Evol Microbiol. 2019 May 28. doi: 10.1099/ijsem.0.003457. [Epub ahead of print]

PMID:
31135334
3.

Acute Gaucher Disease-Like Condition in an Indian Infant with a Novel Biallelic Mutation in the Prosaposin Gene.

Radha Rama Devi A, Kadali S, Radhika A, Singh V, Kumar MA, Reddy GM, Naushad SM.

J Pediatr Genet. 2019 Jun;8(2):81-85. doi: 10.1055/s-0038-1675372. Epub 2018 Oct 26.

PMID:
31061751
4.

Recipient ABCB1, donor and recipient CYP3A5 genotypes influence tacrolimus pharmacokinetics in liver transplant cases.

Naushad SM, Pavani A, Rupasree Y, Hussain T, Alrokayan SA, Kutala VK.

Pharmacol Rep. 2019 Jun;71(3):385-392. doi: 10.1016/j.pharep.2019.01.006. Epub 2019 Jan 11.

PMID:
31003147
5.

Molecular diagnosis of asparagine synthetase (ASNS) deficiency in two Indian families and literature review of 29 ASNS deficient cases.

Radha Rama Devi A, Naushad SM.

Gene. 2019 Jul 1;704:97-102. doi: 10.1016/j.gene.2019.04.024. Epub 2019 Apr 9.

PMID:
30978478
6.

Biochemical, machine learning and molecular approaches for the differential diagnosis of Mucopolysaccharidoses.

Kadali S, Naushad SM, Radha Rama Devi A, Bodiga VL.

Mol Cell Biochem. 2019 Mar 21. doi: 10.1007/s11010-019-03527-6. [Epub ahead of print]

PMID:
30903511
7.

Comprehensive Virulence Gene Profiling of Bovine Non-aureus Staphylococci Based on Whole-Genome Sequencing Data.

Naushad S, Naqvi SA, Nobrega D, Luby C, Kastelic JP, Barkema HW, De Buck J.

mSystems. 2019 Mar 5;4(2). pii: e00098-18. doi: 10.1128/mSystems.00098-18. eCollection 2019 Mar-Apr.

8.

Classification and regression tree-based prediction of 6-mercaptopurine-induced leucopenia grades in children with acute lymphoblastic leukemia.

Naushad SM, Dorababu P, Rupasree Y, Pavani A, Raghunadharao D, Hussain T, Alrokayan SA, Kutala VK.

Cancer Chemother Pharmacol. 2019 May;83(5):875-880. doi: 10.1007/s00280-019-03803-8. Epub 2019 Feb 26.

PMID:
30806759
9.

Incense smoke exposure augments systemic oxidative stress, inflammation and endothelial dysfunction in male albino rats.

Hussain T, Alamery S, Dikshit G, Mohammed AA, Naushad SM, Alrokayan S.

Toxicol Mech Methods. 2019 Mar;29(3):211-218. doi: 10.1080/15376516.2018.1544681. Epub 2019 Jan 16.

PMID:
30480468
10.

Associations between digital dermatitis lesion grades in dairy cattle and the quantities of four Treponema species.

Beninger C, Naqvi SA, Naushad S, Orsel K, Luby C, Derakhshani H, Khafipour E, De Buck J.

Vet Res. 2018 Oct 29;49(1):111. doi: 10.1186/s13567-018-0605-z.

11.

Application of machine learning algorithms for the differential diagnosis of peroxisomal disorders.

Subhashini P, Jaya Krishna S, Usha Rani G, Sushma Chander N, Maheshwar Reddy G, Naushad SM.

J Biochem. 2019 Jan 1;165(1):67-73. doi: 10.1093/jb/mvy085.

PMID:
30295825
12.

Utility of amniotic fluid chitotriosidase in the prenatal diagnosis of lysosomal storage disorders.

Kadali S, Madalasa T, Reddy GM, Naushad SM.

Clin Biochem. 2018 Nov;61:40-44. doi: 10.1016/j.clinbiochem.2018.09.004. Epub 2018 Sep 8.

PMID:
30205089
13.

Whole exome sequencing of breast cancer (TNBC) cases from India: association of MSH6 and BRIP1 variants with TNBC risk and oxidative DNA damage.

Aravind Kumar M, Naushad SM, Narasimgu N, Nagaraju Naik S, Kadali S, Shanker U, Lakshmi Narasu M.

Mol Biol Rep. 2018 Oct;45(5):1413-1419. doi: 10.1007/s11033-018-4307-4. Epub 2018 Aug 22.

PMID:
30136158
14.

Identification of Two Novel Mutations in Aminomethyltransferase Gene in Cases of Glycine Encephalopathy.

Radha Rama Devi A, Lingappa L, Naushad SM.

J Pediatr Genet. 2018 Sep;7(3):97-102. doi: 10.1055/s-0038-1667036. Epub 2018 Jul 6.

PMID:
30105116
15.

Machine learning algorithm-based risk prediction model of coronary artery disease.

Naushad SM, Hussain T, Indumathi B, Samreen K, Alrokayan SA, Kutala VK.

Mol Biol Rep. 2018 Oct;45(5):901-910. doi: 10.1007/s11033-018-4236-2. Epub 2018 Jul 11.

PMID:
29995270
16.

Meta-analysis of genetic polymorphisms in xenobiotic metabolizing enzymes and their association with breast cancer risk.

Hussain T, Alrokayan S, Upasna U, Pavithrakumari M, Jayapriya J, Kutala VK, Naushad SM.

J Genet. 2018 Jun;97(2):523-537.

17.

SLC25A13 c.1610_1612delinsAT mutation in an Indian patient and literature review of 79 cases of citrin deficiency for genotype-phenotype associations.

Radha Rama Devi A, Naushad SM.

Gene. 2018 Aug 20;668:190-195. doi: 10.1016/j.gene.2018.05.076. Epub 2018 May 19. Review.

PMID:
29787821
18.

Artificial neural network model for predicting the bioavailability of tacrolimus in patients with renal transplantation.

Thishya K, Vattam KK, Naushad SM, Raju SB, Kutala VK.

PLoS One. 2018 Apr 5;13(4):e0191921. doi: 10.1371/journal.pone.0191921. eCollection 2018.

19.

Prevalence and Genetic Basis of Antimicrobial Resistance in Non-aureus Staphylococci Isolated from Canadian Dairy Herds.

Nobrega DB, Naushad S, Naqvi SA, Condas LAZ, Saini V, Kastelic JP, Luby C, De Buck J, Barkema HW.

Front Microbiol. 2018 Feb 16;9:256. doi: 10.3389/fmicb.2018.00256. eCollection 2018.

20.

Virulence gene profiles: alpha-hemolysin and clonal diversity in Staphylococcus aureus isolates from bovine clinical mastitis in China.

Zhang L, Gao J, Barkema HW, Ali T, Liu G, Deng Y, Naushad S, Kastelic JP, Han B.

BMC Vet Res. 2018 Mar 2;14(1):63. doi: 10.1186/s12917-018-1374-7.

21.

Neuro-fuzzy model of homocysteine metabolism.

Naushad SM, Rama Devi AR, Nivetha S, Lakshmitha G, Stanley AB, Hussain T, Kutala VK.

J Genet. 2017 Dec;96(6):919-926.

22.

Application of adaptive neuro-fuzzy inference systems (ANFIS) to delineate estradiol, glutathione and homocysteine interactions.

Mohan IK, Khan SA, Jacob R, Sushma Chander N, Hussain T, Alrokayan SA, Radha Rama Devi A, Naushad SM.

Clin Nutr ESPEN. 2017 Aug;20:41-46. doi: 10.1016/j.clnesp.2017.03.007. Epub 2017 Apr 27.

PMID:
29072168
23.

Epigenetic regulation of miR-200 as the potential strategy for the therapy against triple-negative breast cancer.

Mekala JR, Naushad SM, Ponnusamy L, Arivazhagan G, Sakthiprasad V, Pal-Bhadra M.

Gene. 2018 Jan 30;641:248-258. doi: 10.1016/j.gene.2017.10.018. Epub 2017 Oct 14. Review.

PMID:
29038000
24.

Comparison of treatment records and inventory of empty drug containers to quantify antimicrobial usage in dairy herds.

Nobrega DB, De Buck J, Naqvi SA, Liu G, Naushad S, Saini V, Barkema HW.

J Dairy Sci. 2017 Dec;100(12):9736-9745. doi: 10.3168/jds.2017-13116. Epub 2017 Oct 4.

25.

Microarray-based SNP genotyping to identify genetic risk factors of triple-negative breast cancer (TNBC) in South Indian population.

Aravind Kumar M, Singh V, Naushad SM, Shanker U, Lakshmi Narasu M.

Mol Cell Biochem. 2018 May;442(1-2):1-10. doi: 10.1007/s11010-017-3187-6. Epub 2017 Sep 16.

PMID:
28918577
26.

Scriptaid cause histone deacetylase inhibition and cell cycle arrest in HeLa cancer cells: A study on structural and functional aspects.

Janaki Ramaiah M, Naushad SM, Lavanya A, Srinivas C, Anjana Devi T, Sampathkumar S, Dharan DB, Bhadra MP.

Gene. 2017 Sep 5;627:379-386. doi: 10.1016/j.gene.2017.06.031. Epub 2017 Jun 29.

PMID:
28668345
27.

Bacteriocins of Non-aureus Staphylococci Isolated from Bovine Milk.

Carson DA, Barkema HW, Naushad S, De Buck J.

Appl Environ Microbiol. 2017 Aug 17;83(17). pii: e01015-17. doi: 10.1128/AEM.01015-17. Print 2017 Sep 1.

28.

FOXN1 Italian founder mutation in Indian family: Implications in prenatal diagnosis.

Radha Rama Devi A, Panday NN, Naushad SM.

Gene. 2017 Sep 5;627:222-225. doi: 10.1016/j.gene.2017.06.033. Epub 2017 Jun 19.

PMID:
28636882
29.

Prevalence of non-aureus staphylococci species causing intramammary infections in Canadian dairy herds.

Condas LAZ, De Buck J, Nobrega DB, Carson DA, Naushad S, De Vliegher S, Zadoks RN, Middleton JR, Dufour S, Kastelic JP, Barkema HW.

J Dairy Sci. 2017 Jul;100(7):5592-5612. doi: 10.3168/jds.2016-12478. Epub 2017 May 17.

30.

Comprehensive Phylogenetic Analysis of Bovine Non-aureus Staphylococci Species Based on Whole-Genome Sequencing.

Naushad S, Barkema HW, Luby C, Condas LA, Nobrega DB, Carson DA, De Buck J.

Front Microbiol. 2016 Dec 20;7:1990. doi: 10.3389/fmicb.2016.01990. eCollection 2016.

33.

Targeted exome sequencing for the identification of complementation groups in methylmalonic aciduria: A south Indian experience.

Devi AR, Naushad SM.

Clin Biochem. 2017 Jan;50(1-2):68-72. doi: 10.1016/j.clinbiochem.2016.08.016. Epub 2016 Aug 31.

PMID:
27591164
34.

Population-level diversity in the association of genetic polymorphisms of one-carbon metabolism with breast cancer risk.

Naushad SM, Divya C, Janaki Ramaiah M, Hussain T, Alrokayan SA, Kutala VK.

J Community Genet. 2016 Oct;7(4):279-290. Epub 2016 Aug 19.

35.

Development of neuro-fuzzy model to explore gene-nutrient interactions modulating warfarin dose requirement.

Pavani A, Naushad SM, Lakshmitha G, Nivetha S, Stanley BA, Malempati AR, Kutala VK.

Pharmacogenomics. 2016 Aug;17(12):1315-25. doi: 10.2217/pgs-2016-0058. Epub 2016 Jul 27.

PMID:
27462768
36.

In silico approaches to identify the potential inhibitors of glutamate carboxypeptidase II (GCPII) for neuroprotection.

Naushad SM, Janaki Ramaiah M, Stanley BA, Prasanna Lakshmi S, Vishnu Priya J, Hussain T, Alrokayan SA, Kutala VK.

J Theor Biol. 2016 Oct 7;406:137-42. doi: 10.1016/j.jtbi.2016.07.016. Epub 2016 Jul 16.

PMID:
27430729
38.

Artificial neural network-based exploration of gene-nutrient interactions in folate and xenobiotic metabolic pathways that modulate susceptibility to breast cancer.

Naushad SM, Janaki Ramaiah M, Pavithrakumari M, Jayapriya J, Hussain T, Alrokayan SA, Gottumukkala SR, Digumarti R, Kutala VK.

Gene. 2016 Apr 15;580(2):159-168. doi: 10.1016/j.gene.2016.01.023. Epub 2016 Jan 16.

PMID:
26784656
39.

Application of Various Statistical Models to Explore Gene-Gene Interactions in Folate, Xenobiotic, Toll-Like Receptor and STAT4 Pathways that Modulate Susceptibility to Systemic Lupus Erythematosus.

Rupasree Y, Naushad SM, Varshaa R, Mahalakshmi GS, Kumaraswami K, Rajasekhar L, Kutala VK.

Mol Diagn Ther. 2016 Feb;20(1):83-95. doi: 10.1007/s40291-015-0181-0.

PMID:
26689915
40.

Association of estrogen receptor 1 (ESR1) haplotypes with risk for systemic lupus erythematosus among South Indians.

Rupasree Y, Naushad SM, Rajasekhar L, Uma A, Kutala VK.

Indian J Exp Biol. 2015 Nov;53(11):714-8.

PMID:
26669013
41.

Artificial neural network-based pharmacogenomic algorithm for warfarin dose optimization.

Pavani A, Naushad SM, Kumar RM, Srinath M, Malempati AR, Kutala VK.

Pharmacogenomics. 2016;17(2):121-31. doi: 10.2217/pgs.15.161. Epub 2015 Dec 15.

PMID:
26666467
42.

Clinical utility of genetic variants of glutamate carboxypeptidase II in predicting breast cancer and prostate cancer risk.

Naushad SM, Shree Divyya P, Janaki Ramaiah M, Alex Stanley B, Prasanna Lakshmi S, Vishnupriya J, Kutala VK.

Cancer Genet. 2015 Nov;208(11):552-8. doi: 10.1016/j.cancergen.2015.09.001. Epub 2015 Sep 8.

PMID:
26471812
43.

Comparative analysis of four disease prediction models of Parkinson's disease.

Kumudini N, Naushad SM, Alex Stanley B, Niveditha M, Sharmila G, Kumaraswami K, Borghain R, Mridula R, Kutala VK.

Mol Cell Biochem. 2016 Jan;411(1-2):127-34. doi: 10.1007/s11010-015-2574-0. Epub 2015 Oct 5.

PMID:
26438087
44.

A phylogenomic and molecular markers based analysis of the phylum Chlamydiae: proposal to divide the class Chlamydiia into two orders, Chlamydiales and Parachlamydiales ord. nov., and emended description of the class Chlamydiia.

Gupta RS, Naushad S, Chokshi C, Griffiths E, Adeolu M.

Antonie Van Leeuwenhoek. 2015 Sep;108(3):765-81. doi: 10.1007/s10482-015-0532-1. Epub 2015 Jul 16.

PMID:
26179278
45.

Mechanistic insights into the effect of CYP2C9*2 and CYP2C9*3 variants on the 7-hydroxylation of warfarin.

Pavani A, Naushad SM, Stanley BA, Kamakshi RG, Abinaya K, Amaresh Rao M, Uma A, Kutala VK.

Pharmacogenomics. 2015;16(4):393-400. doi: 10.2217/pgs.14.185.

PMID:
25823787
46.

Phylogenomic and molecular demarcation of the core members of the polyphyletic pasteurellaceae genera actinobacillus, haemophilus, and pasteurella.

Naushad S, Adeolu M, Goel N, Khadka B, Al-Dahwi A, Gupta RS.

Int J Genomics. 2015;2015:198560. doi: 10.1155/2015/198560. Epub 2015 Mar 3.

47.

Multifactor dimensionality reduction analysis to elucidate the cross-talk between one-carbon and xenobiotic metabolic pathways in multi-disease models.

Naushad SM, Vijayalakshmi SV, Rupasree Y, Kumudini N, Sowganthika S, Naidu JV, Ramaiah MJ, Rao DN, Kutala VK.

Mol Biol Rep. 2015 Jul;42(7):1211-24. doi: 10.1007/s11033-015-3856-z. Epub 2015 Feb 4.

PMID:
25648260
50.

Association of TLR4 (D299G, T399I), TLR9 -1486T>C, TIRAP S180L and TNF-α promoter (-1031, -863, -857) polymorphisms with risk for systemic lupus erythematosus among South Indians.

Rupasree Y, Naushad SM, Rajasekhar L, Uma A, Kutala VK.

Lupus. 2015 Jan;24(1):50-7. doi: 10.1177/0961203314549792. Epub 2014 Sep 2.

PMID:
25182168

Supplemental Content

Loading ...
Support Center