Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 196

1.

Roles of HIFs and VEGF in angiogenesis in the retina and brain.

Rattner A, Williams J, Nathans J.

J Clin Invest. 2019 Aug 12;130:3807-3820. doi: 10.1172/JCI126655. eCollection 2019 Aug 12.

2.

Defining the binding interface of Amyloid Precursor Protein (APP) and Contactin3 (CNTN3) by site-directed mutagenesis.

Peng X, Williams J, Smallwood PM, Nathans J.

PLoS One. 2019 Jul 18;14(7):e0219384. doi: 10.1371/journal.pone.0219384. eCollection 2019.

3.

Molecular determinants in Frizzled, Reck, and Wnt7a for ligand-specific signaling in neurovascular development.

Cho C, Wang Y, Smallwood PM, Williams J, Nathans J.

Elife. 2019 Jun 21;8. pii: e47300. doi: 10.7554/eLife.47300.

4.

Dlg1 activates beta-catenin signaling to regulate retinal angiogenesis and the blood-retina and blood-brain barriers.

Cho C, Wang Y, Smallwood PM, Williams J, Nathans J.

Elife. 2019 May 8;8. pii: e45542. doi: 10.7554/eLife.45542.

5.

Hypoxia tolerance in the Norrin-deficient retina and the chronically hypoxic brain studied at single-cell resolution.

Heng JS, Rattner A, Stein-O'Brien GL, Winer BL, Jones BW, Vernon HJ, Goff LA, Nathans J.

Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):9103-9114. doi: 10.1073/pnas.1821122116. Epub 2019 Apr 15.

6.

Beta-catenin signaling regulates barrier-specific gene expression in circumventricular organ and ocular vasculatures.

Wang Y, Sabbagh MF, Gu X, Rattner A, Williams J, Nathans J.

Elife. 2019 Apr 1;8. pii: e43257. doi: 10.7554/eLife.43257.

7.

Interplay of the Norrin and Wnt7a/Wnt7b signaling systems in blood-brain barrier and blood-retina barrier development and maintenance.

Wang Y, Cho C, Williams J, Smallwood PM, Zhang C, Junge HJ, Nathans J.

Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11827-E11836. doi: 10.1073/pnas.1813217115. Epub 2018 Nov 26. Erratum in: Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3934.

8.

Affinity capture of polyribosomes followed by RNAseq (ACAPseq), a discovery platform for protein-protein interactions.

Peng X, Emiliani F, Smallwood PM, Rattner A, Lei H, Sabbagh MF, Nathans J.

Elife. 2018 Oct 22;7. pii: e40982. doi: 10.7554/eLife.40982.

9.

Transcriptional and epigenomic landscapes of CNS and non-CNS vascular endothelial cells.

Sabbagh MF, Heng JS, Luo C, Castanon RG, Nery JR, Rattner A, Goff LA, Ecker JR, Nathans J.

Elife. 2018 Sep 6;7. pii: e36187. doi: 10.7554/eLife.36187.

10.

Peropsin modulates transit of vitamin A from retina to retinal pigment epithelium.

Cook JD, Ng SY, Lloyd M, Eddington S, Sun H, Nathans J, Bok D, Radu RA, Travis GH.

J Biol Chem. 2017 Dec 29;292(52):21407-21416. doi: 10.1074/jbc.M117.812701. Epub 2017 Nov 6.

11.

Comparative analysis reveals genomic features of stress-induced transcriptional readthrough.

Vilborg A, Sabath N, Wiesel Y, Nathans J, Levy-Adam F, Yario TA, Steitz JA, Shalgi R.

Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8362-E8371. doi: 10.1073/pnas.1711120114. Epub 2017 Sep 19.

12.

Reck and Gpr124 Are Essential Receptor Cofactors for Wnt7a/Wnt7b-Specific Signaling in Mammalian CNS Angiogenesis and Blood-Brain Barrier Regulation.

Cho C, Smallwood PM, Nathans J.

Neuron. 2017 Aug 30;95(5):1221-1225. doi: 10.1016/j.neuron.2017.08.032. No abstract available.

13.

Cerebral Vein Malformations Result from Loss of Twist1 Expression and BMP Signaling from Skull Progenitor Cells and Dura.

Tischfield MA, Robson CD, Gilette NM, Chim SM, Sofela FA, DeLisle MM, Gelber A, Barry BJ, MacKinnon S, Dagi LR, Nathans J, Engle EC.

Dev Cell. 2017 Sep 11;42(5):445-461.e5. doi: 10.1016/j.devcel.2017.07.027. Epub 2017 Aug 30.

14.

Reck and Gpr124 Are Essential Receptor Cofactors for Wnt7a/Wnt7b-Specific Signaling in Mammalian CNS Angiogenesis and Blood-Brain Barrier Regulation.

Cho C, Smallwood PM, Nathans J.

Neuron. 2017 Aug 30;95(5):1056-1073.e5. doi: 10.1016/j.neuron.2017.07.031. Epub 2017 Aug 10. Erratum in: Neuron. 2017 Aug 30;95(5):1221-1225.

15.

Population growth: Help to make food go further in Egypt.

Nathans J.

Nature. 2017 Jun 7;546(7657):210. doi: 10.1038/546210e. No abstract available.

PMID:
28593965
16.

Intramembrane Proteolysis of Astrotactins.

Chang H, Smallwood PM, Williams J, Nathans J.

J Biol Chem. 2017 Feb 24;292(8):3506-3516. doi: 10.1074/jbc.M116.768077. Epub 2017 Jan 18.

17.

Patterning of papillae on the mouse tongue: A system for the quantitative assessment of planar cell polarity signaling.

Wang Y, Williams J, Rattner A, Wu S, Bassuk AG, Goffinet AM, Nathans J.

Dev Biol. 2016 Nov 15;419(2):298-310. doi: 10.1016/j.ydbio.2016.09.004. Epub 2016 Sep 6.

18.

THE CELLULAR COMPASS.

Adler PN, Nathans J.

Sci Am. 2016 Mar;314(3):66-71. No abstract available.

PMID:
27066647
19.

How scientists can reduce their carbon footprint.

Nathans J, Sterling P.

Elife. 2016 Mar 31;5. pii: e15928. doi: 10.7554/eLife.15928.

20.

Frizzled Receptors in Development and Disease.

Wang Y, Chang H, Rattner A, Nathans J.

Curr Top Dev Biol. 2016;117:113-39. doi: 10.1016/bs.ctdb.2015.11.028. Epub 2016 Jan 27. Review.

21.

Epigenomic landscapes of retinal rods and cones.

Mo A, Luo C, Davis FP, Mukamel EA, Henry GL, Nery JR, Urich MA, Picard S, Lister R, Eddy SR, Beer MA, Ecker JR, Nathans J.

Elife. 2016 Mar 7;5:e11613. doi: 10.7554/eLife.11613.

22.

Sox7, Sox17, and Sox18 Cooperatively Regulate Vascular Development in the Mouse Retina.

Zhou Y, Williams J, Smallwood PM, Nathans J.

PLoS One. 2015 Dec 2;10(12):e0143650. doi: 10.1371/journal.pone.0143650. eCollection 2015.

23.

The spatio-temporal domains of Frizzled6 action in planar polarity control of hair follicle orientation.

Chang H, Smallwood PM, Williams J, Nathans J.

Dev Biol. 2016 Jan 1;409(1):181-193. doi: 10.1016/j.ydbio.2015.10.027. Epub 2015 Nov 10.

24.

Identification of Astrotactin2 as a Genetic Modifier That Regulates the Global Orientation of Mammalian Hair Follicles.

Chang H, Cahill H, Smallwood PM, Wang Y, Nathans J.

PLoS Genet. 2015 Sep 29;11(9):e1005532. doi: 10.1371/journal.pgen.1005532. eCollection 2015.

25.

Rac1 plays an essential role in axon growth and guidance and in neuronal survival in the central and peripheral nervous systems.

Hua ZL, Emiliani FE, Nathans J.

Neural Dev. 2015 Sep 23;10:21. doi: 10.1186/s13064-015-0049-3.

26.

Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain.

Mo A, Mukamel EA, Davis FP, Luo C, Henry GL, Picard S, Urich MA, Nery JR, Sejnowski TJ, Lister R, Eddy SR, Ecker JR, Nathans J.

Neuron. 2015 Jun 17;86(6):1369-84. doi: 10.1016/j.neuron.2015.05.018.

27.

Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/╬▓-catenin pathway during brain angiogenesis.

Vanhollebeke B, Stone OA, Bostaille N, Cho C, Zhou Y, Maquet E, Gauquier A, Cabochette P, Fukuhara S, Mochizuki N, Nathans J, Stainier DY.

Elife. 2015 Jun 8;4. doi: 10.7554/eLife.06489.

28.

Functional assembly of accessory optic system circuitry critical for compensatory eye movements.

Sun LO, Brady CM, Cahill H, Al-Khindi T, Sakuta H, Dhande OS, Noda M, Huberman AD, Nathans J, Kolodkin AL.

Neuron. 2015 May 20;86(4):971-984. doi: 10.1016/j.neuron.2015.03.064. Epub 2015 May 7.

29.

The role of the hypoxia response in shaping retinal vascular development in the absence of Norrin/Frizzled4 signaling.

Rattner A, Wang Y, Zhou Y, Williams J, Nathans J.

Invest Ophthalmol Vis Sci. 2014 Nov 20;55(12):8614-25. doi: 10.1167/iovs.14-15693.

30.

Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signaling.

Zhou Y, Nathans J.

Dev Cell. 2014 Oct 27;31(2):248-56. doi: 10.1016/j.devcel.2014.08.018. Epub 2014 Oct 16.

31.

Partial interchangeability of Fz3 and Fz6 in tissue polarity signaling for epithelial orientation and axon growth and guidance.

Hua ZL, Chang H, Wang Y, Smallwood PM, Nathans J.

Development. 2014 Oct;141(20):3944-54. doi: 10.1242/dev.110189.

32.

Canonical WNT signaling components in vascular development and barrier formation.

Zhou Y, Wang Y, Tischfield M, Williams J, Smallwood PM, Rattner A, Taketo MM, Nathans J.

J Clin Invest. 2014 Sep;124(9):3825-46. doi: 10.1172/JCI76431. Epub 2014 Aug 1.

33.
34.

Complete morphologies of basal forebrain cholinergic neurons in the mouse.

Wu H, Williams J, Nathans J.

Elife. 2014 May 7;3:e02444. doi: 10.7554/eLife.02444.

35.

Frizzled3 is required for the development of multiple axon tracts in the mouse central nervous system.

Hua ZL, Jeon S, Caterina MJ, Nathans J.

Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):E3005-14. doi: 10.1073/pnas.1406399111. Epub 2014 May 5.

36.

Cellular resolution maps of X chromosome inactivation: implications for neural development, function, and disease.

Wu H, Luo J, Yu H, Rattner A, Mo A, Wang Y, Smallwood PM, Erlanger B, Wheelan SJ, Nathans J.

Neuron. 2014 Jan 8;81(1):103-19. doi: 10.1016/j.neuron.2013.10.051.

37.

Frizzled3 controls axonal development in distinct populations of cranial and spinal motor neurons.

Hua ZL, Smallwood PM, Nathans J.

Elife. 2013 Dec 17;2:e01482. doi: 10.7554/eLife.01482.

38.

Endothelin-2 signaling in the neural retina promotes the endothelial tip cell state and inhibits angiogenesis.

Rattner A, Yu H, Williams J, Smallwood PM, Nathans J.

Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):E3830-9. doi: 10.1073/pnas.1315509110. Epub 2013 Sep 16.

39.

How to draw the line in biomedical research.

Huang L, Rattner A, Liu H, Nathans J.

Elife. 2013 Mar 19;2:e00638. doi: 10.7554/eLife.00638.

40.

Responses of hair follicle-associated structures to loss of planar cell polarity signaling.

Chang H, Nathans J.

Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):E908-17. doi: 10.1073/pnas.1301430110. Epub 2013 Feb 19.

41.

Morphologic diversity of cutaneous sensory afferents revealed by genetically directed sparse labeling.

Wu H, Williams J, Nathans J.

Elife. 2012 Dec 18;1:e00181. doi: 10.7554/eLife.00181.

42.

Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity.

Wang Y, Rattner A, Zhou Y, Williams J, Smallwood PM, Nathans J.

Cell. 2012 Dec 7;151(6):1332-44. doi: 10.1016/j.cell.2012.10.042.

43.
44.

Combinatorial expression of Brn3 transcription factors in somatosensory neurons: genetic and morphologic analysis.

Badea TC, Williams J, Smallwood P, Shi M, Motajo O, Nathans J.

J Neurosci. 2012 Jan 18;32(3):995-1007. doi: 10.1523/JNEUROSCI.4755-11.2012.

45.

Signaling by sensory receptors.

Julius D, Nathans J.

Cold Spring Harb Perspect Biol. 2012 Jan 1;4(1):a005991. doi: 10.1101/cshperspect.a005991.

46.

Class 5 transmembrane semaphorins control selective Mammalian retinal lamination and function.

Matsuoka RL, Chivatakarn O, Badea TC, Samuels IS, Cahill H, Katayama K, Kumar SR, Suto F, Ch├ędotal A, Peachey NS, Nathans J, Yoshida Y, Giger RJ, Kolodkin AL.

Neuron. 2011 Aug 11;71(3):460-73. doi: 10.1016/j.neuron.2011.06.009.

47.

Preclinical assessment of CNS drug action using eye movements in mice.

Cahill H, Rattner A, Nathans J.

J Clin Invest. 2011 Sep;121(9):3528-41. doi: 10.1172/JCI45557. Epub 2011 Aug 8.

48.

Genetic mosaic analysis reveals a major role for frizzled 4 and frizzled 8 in controlling ureteric growth in the developing kidney.

Ye X, Wang Y, Rattner A, Nathans J.

Development. 2011 Mar;138(6):1161-72. doi: 10.1242/dev.057620.

49.

China's plan flawed but courageous.

Nathans J.

Science. 2010 Dec 17;330(6011):1625. doi: 10.1126/science.330.6011.1625-a. No abstract available.

PMID:
21163997
50.

When whorls collide: the development of hair patterns in frizzled 6 mutant mice.

Wang Y, Chang H, Nathans J.

Development. 2010 Dec;137(23):4091-9. doi: 10.1242/dev.057455.

Supplemental Content

Loading ...
Support Center