Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 65

1.

DArTseq-based analysis of genomic relationships among species of tribe Triticeae.

Edet OU, Gorafi YSA, Nasuda S, Tsujimoto H.

Sci Rep. 2018 Nov 6;8(1):16397. doi: 10.1038/s41598-018-34811-y.

2.

Structural features of two major nucleolar organizer regions (NORs), Nor-B1 and Nor-B2, and chromosome-specific rRNA gene expression in wheat.

Handa H, Kanamori H, Tanaka T, Murata K, Kobayashi F, Robinson SJ, Koh CS, Pozniak CJ, Sharpe AG, Paux E; International Wheat Genome Sequencing Consortium, Wu J, Nasuda S.

Plant J. 2018 Sep 20. doi: 10.1111/tpj.14094. [Epub ahead of print]

PMID:
30238531
3.

Shifting the limits in wheat research and breeding using a fully annotated reference genome.

International Wheat Genome Sequencing Consortium (IWGSC); IWGSC RefSeq principal investigators:, Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N; IWGSC whole-genome assembly principal investigators:, Pozniak CJ, Stein N, Choulet F, Distelfeld A, Eversole K, Poland J, Rogers J, Ronen G, Sharpe AG; Whole-genome sequencing and assembly:, Pozniak C, Ronen G, Stein N, Barad O, Baruch K, Choulet F, Keeble-Gagnère G, Mascher M, Sharpe AG, Ben-Zvi G, Josselin AA; Hi-C data-based scaffolding:, Stein N, Mascher M, Himmelbach A; Whole-genome assembly quality control and analyses:, Choulet F, Keeble-Gagnère G, Mascher M, Rogers J, Balfourier F, Gutierrez-Gonzalez J, Hayden M, Josselin AA, Koh C, Muehlbauer G, Pasam RK, Paux E, Pozniak CJ, Rigault P, Sharpe AG, Tibbits J, Tiwari V; Pseudomolecule assembly:, Choulet F, Keeble-Gagnère G, Mascher M, Josselin AA, Rogers J; RefSeq genome structure and gene analyses:, Spannagl M, Choulet F, Lang D, Gundlach H, Haberer G, Keeble-Gagnère G, Mayer KFX, Ormanbekova D, Paux E, Prade V, Šimková H, Wicker T; Automated annotation:, Choulet F, Spannagl M, Swarbreck D, Rimbert H, Felder M, Guilhot N, Gundlach H, Haberer G, Kaithakottil G, Keilwagen J, Lang D, Leroy P, Lux T, Mayer KFX, Twardziok S, Venturini L; Manual gene curation:, Appels R, Rimbert H, Choulet F, Juhász A, Keeble-Gagnère G; Subgenome comparative analyses:, Choulet F, Spannagl M, Lang D, Abrouk M, Haberer G, Keeble-Gagnère G, Mayer KFX, Wicker T; Transposable elements:, Choulet F, Wicker T, Gundlach H, Lang D, Spannagl M; Phylogenomic analyses:, Lang D, Spannagl M, Appels R, Fischer I; Transcriptome analyses and RNA-seq data:, Uauy C, Borrill P, Ramirez-Gonzalez RH, Appels R, Arnaud D, Chalabi S, Chalhoub B, Choulet F, Cory A, Datla R, Davey MW, Hayden M, Jacobs J, Lang D, Robinson SJ, Spannagl M, Steuernagel B, Tibbits J, Tiwari V, van Ex F, Wulff BBH; Whole-genome methylome:, Pozniak CJ, Robinson SJ, Sharpe AG, Cory A; Histone mark analyses:, Benhamed M, Paux E, Bendahmane A, Concia L, Latrasse D; BAC chromosome MTP IWGSC–Bayer Whole-Genome Profiling (WGP) tags:, Rogers J, Jacobs J, Alaux M, Appels R, Bartoš J, Bellec A, Berges H, Doležel J, Feuillet C, Frenkel Z, Gill B, Korol A, Letellier T, Olsen OA, Šimková H, Singh K, Valárik M, van der Vossen E, Vautrin S, Weining S; Chromosome LTC mapping and physical mapping quality control:, Korol A, Frenkel Z, Fahima T, Glikson V, Raats D, Rogers J; RH mapping:, Tiwari V, Gill B, Paux E, Poland J; Optical mapping:, Doležel J, Číhalíková J, Šimková H, Toegelová H, Vrána J; Recombination analyses:, Sourdille P, Darrier B; Gene family analyses:, Appels R, Spannagl M, Lang D, Fischer I, Ormanbekova D, Prade V; CBF gene family:, Barabaschi D, Cattivelli L; Dehydrin gene family:, Hernandez P, Galvez S, Budak H; NLR gene family:, Steuernagel B, Jones JDG, Witek K, Wulff BBH, Yu G; PPR gene family:, Small I, Melonek J, Zhou R; Prolamin gene family:, Juhász A, Belova T, Appels R, Olsen OA; WAK gene family:, Kanyuka K, King R; Stem solidness (SSt1) QTL team:, Nilsen K, Walkowiak S, Pozniak CJ, Cuthbert R, Datla R, Knox R, Wiebe K, Xiang D; Flowering locus C (FLC) gene team:, Rohde A, Golds T; Genome size analysis:, Doležel J, Čížková J, Tibbits J; MicroRNA and tRNA annotation:, Budak H, Akpinar BA, Biyiklioglu S; Genetic maps and mapping:, Muehlbauer G, Poland J, Gao L, Gutierrez-Gonzalez J, N'Daiye A; BAC libraries and chromosome sorting:, Doležel J, Šimková H, Číhalíková J, Kubaláková M, Šafář J, Vrána J; BAC pooling, BAC library repository, and access:, Berges H, Bellec A, Vautrin S; IWGSC sequence and data repository and access:, Alaux M, Alfama F, Adam-Blondon AF, Flores R, Guerche C, Letellier T, Loaec M, Quesneville H; Physical maps and BAC-based sequences:; 1A BAC sequencing and assembly:, Pozniak CJ, Sharpe AG, Walkowiak S, Budak H, Condie J, Ens J, Koh C, Maclachlan R, Tan Y, Wicker T; 1B BAC sequencing and assembly:, Choulet F, Paux E, Alberti A, Aury JM, Balfourier F, Barbe V, Couloux A, Cruaud C, Labadie K, Mangenot S, Wincker P; 1D, 4D, and 6D physical mapping:, Gill B, Kaur G, Luo M, Sehgal S; 2AL physical mapping:, Singh K, Chhuneja P, Gupta OP, Jindal S, Kaur P, Malik P, Sharma P, Yadav B; 2AS physical mapping:, Singh NK, Khurana J, Chaudhary C, Khurana P, Kumar V, Mahato A, Mathur S, Sevanthi A, Sharma N, Tomar RS; 2B, 2D, 4B, 5BL, and 5DL IWGSC–Bayer Whole-Genome Profiling (WGP) physical maps:, Rogers J, Jacobs J, Alaux M, Bellec A, Berges H, Doležel J, Feuillet C, Frenkel Z, Gill B, Korol A, van der Vossen E, Vautrin S; 3AL physical mapping:, Gill B, Kaur G, Luo M, Sehgal S; 3DS physical mapping and BAC sequencing and assembly:, Bartoš J, Holušová K, Plíhal O; 3DL BAC sequencing and assembly:, Clark MD, Heavens D, Kettleborough G, Wright J; 4A physical mapping, BAC sequencing, assembly, and annotation:, Valárik M, Abrouk M, Balcárková B, Holušová K, Hu Y, Luo M; 5BS BAC sequencing and assembly:, Salina E, Ravin N, Skryabin K, Beletsky A, Kadnikov V, Mardanov A, Nesterov M, Rakitin A, Sergeeva E; 6B BAC sequencing and assembly:, Handa H, Kanamori H, Katagiri S, Kobayashi F, Nasuda S, Tanaka T, Wu J; 7A physical mapping and BAC sequencing:, Appels R, Hayden M, Keeble-Gagnère G, Rigault P, Tibbits J; 7B physical mapping, BAC sequencing, and assembly:, Olsen OA, Belova T, Cattonaro F, Jiumeng M, Kugler K, Mayer KFX, Pfeifer M, Sandve S, Xun X, Zhan B; 7DS BAC sequencing and assembly:, Šimková H, Abrouk M, Batley J, Bayer PE, Edwards D, Hayashi S, Toegelová H, Tulpová Z, Visendi P; 7DL physical mapping and BAC sequencing:, Weining S, Cui L, Du X, Feng K, Nie X, Tong W, Wang L; Figures:, Borrill P, Gundlach H, Galvez S, Kaithakottil G, Lang D, Lux T, Mascher M, Ormanbekova D, Prade V, Ramirez-Gonzalez RH, Spannagl M, Stein N, Uauy C, Venturini L; Manuscript writing team:, Stein N, Appels R, Eversole K, Rogers J, Borrill P, Cattivelli L, Choulet F, Hernandez P, Kanyuka K, Lang D, Mascher M, Nilsen K, Paux E, Pozniak CJ, Ramirez-Gonzalez RH, Šimková H, Small I, Spannagl M, Swarbreck D, Uauy C.

Science. 2018 Aug 17;361(6403). pii: eaar7191. doi: 10.1126/science.aar7191. Epub 2018 Aug 16.

PMID:
30115783
4.

Cytological observation of chromosome breakage in wheat male gametophytes caused by gametocidal action of Aegilops triuncialis-derived chromosome 3Ct.

Murata K, Watanabe S, Tsujimoto H, Nasuda S.

Genes Genet Syst. 2018 Oct 30;93(3):111-118. doi: 10.1266/ggs.18-00010. Epub 2018 Aug 9.

5.

An early-flowering einkorn wheat mutant with deletions of PHYTOCLOCK 1/LUX ARRHYTHMO and VERNALIZATION 2 exhibits a high level of VERNALIZATION 1 expression induced by vernalization.

Nishiura A, Kitagawa S, Matsumura M, Kazama Y, Abe T, Mizuno N, Nasuda S, Murai K.

J Plant Physiol. 2018 Mar;222:28-38. doi: 10.1016/j.jplph.2018.01.002. Epub 2018 Jan 20.

PMID:
29367015
6.

Direct interaction between VRN1 protein and the promoter region of the wheat FT gene.

Tanaka C, Itoh T, Iwasaki Y, Mizuno N, Nasuda S, Murai K.

Genes Genet Syst. 2018 Jul 13;93(1):25-29. doi: 10.1266/ggs.17-00041. Epub 2018 Jan 17.

7.

Three dominant awnless genes in common wheat: Fine mapping, interaction and contribution to diversity in awn shape and length.

Yoshioka M, Iehisa JCM, Ohno R, Kimura T, Enoki H, Nishimura S, Nasuda S, Takumi S.

PLoS One. 2017 Apr 24;12(4):e0176148. doi: 10.1371/journal.pone.0176148. eCollection 2017.

8.

Loss-of-Function Mutations in Three Homoeologous PHYTOCLOCK 1 Genes in Common Wheat Are Associated with the Extra-Early Flowering Phenotype.

Mizuno N, Kinoshita M, Kinoshita S, Nishida H, Fujita M, Kato K, Murai K, Nasuda S.

PLoS One. 2016 Oct 27;11(10):e0165618. doi: 10.1371/journal.pone.0165618. eCollection 2016.

9.

A high-resolution physical map integrating an anchored chromosome with the BAC physical maps of wheat chromosome 6B.

Kobayashi F, Wu J, Kanamori H, Tanaka T, Katagiri S, Karasawa W, Kaneko S, Watanabe S, Sakaguchi T, Hanawa Y, Fujisawa H, Kurita K, Abe C, Iehisa JC, Ohno R, Šafář J, Šimková H, Mukai Y, Hamada M, Saito M, Ishikawa G, Katayose Y, Endo TR, Takumi S, Nakamura T, Sato K, Ogihara Y, Hayakawa K, Doležel J, Nasuda S, Matsumoto T, Handa H.

BMC Genomics. 2015 Aug 12;16:595. doi: 10.1186/s12864-015-1803-y.

10.

Resistance to wheat yellow mosaic virus in Madsen wheat is controlled by two major complementary QTLs.

Suzuki T, Murai MN, Hayashi T, Nasuda S, Yoshimura Y, Komatsuda T.

Theor Appl Genet. 2015 Aug;128(8):1569-78. doi: 10.1007/s00122-015-2532-y. Epub 2015 May 10.

PMID:
25957645
11.

QTL analysis of genetic loci affecting domestication-related spike characters in common wheat.

Katkout M, Kishii M, Kawaura K, Mishina K, Sakuma S, Umeda K, Takumi S, Nitta M, Nasuda S, Ogihara Y.

Genes Genet Syst. 2014;89(3):121-31.

12.

Level of VERNALIZATION 1 expression is correlated with earliness in extra early-flowering mutant wheat lines.

Nishiura A, Kazama Y, Abe T, Mizuno N, Nasuda S, Murai K.

Breed Sci. 2014 Sep;64(3):213-21. doi: 10.1270/jsbbs.64.213. Epub 2014 Sep 1.

13.

A high-density genetic map with array-based markers facilitates structural and quantitative trait locus analyses of the common wheat genome.

Iehisa JC, Ohno R, Kimura T, Enoki H, Nishimura S, Okamoto Y, Nasuda S, Takumi S.

DNA Res. 2014 Oct;21(5):555-67. doi: 10.1093/dnares/dsu020. Epub 2014 Jun 27.

14.

Genetic mechanisms of allopolyploid speciation through hybrid genome doubling: novel insights from wheat (Triticum and Aegilops) studies.

Matsuoka Y, Takumi S, Nasuda S.

Int Rev Cell Mol Biol. 2014;309:199-258. doi: 10.1016/B978-0-12-800255-1.00004-1. Review.

PMID:
24529724
15.

Differential contribution of two Ppd-1 homoeoalleles to early-flowering phenotype in Nepalese and Japanese varieties of common wheat.

Nguyen AT, Iehisa JC, Mizuno N, Nitta M, Nasuda S, Takumi S.

Breed Sci. 2013 Dec;63(4):374-83. doi: 10.1270/jsbbs.63.374. Epub 2013 Dec 1.

16.

Dissection of barley chromosomes 1H and 6H by the gametocidal system.

Ishihara A, Mizuno N, Islam RA, Doležel J, Endo TR, Nasuda S.

Genes Genet Syst. 2014;89(5):203-14. doi: 10.1266/ggs.89.203.

17.

Genome-wide marker development for the wheat D genome based on single nucleotide polymorphisms identified from transcripts in the wild wheat progenitor Aegilops tauschii.

Iehisa JC, Shimizu A, Sato K, Nishijima R, Sakaguchi K, Matsuda R, Nasuda S, Takumi S.

Theor Appl Genet. 2014 Feb;127(2):261-71. doi: 10.1007/s00122-013-2215-5. Epub 2013 Oct 25.

PMID:
24158251
18.

Next-generation survey sequencing and the molecular organization of wheat chromosome 6B.

Tanaka T, Kobayashi F, Joshi GP, Onuki R, Sakai H, Kanamori H, Wu J, Simkova H, Nasuda S, Endo TR, Hayakawa K, Doležel J, Ogihara Y, Itoh T, Matsumoto T, Handa H.

DNA Res. 2014;21(2):103-14. doi: 10.1093/dnares/dst041. Epub 2013 Oct 1.

19.

Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species.

Matsuoka Y, Nasuda S, Ashida Y, Nitta M, Tsujimoto H, Takumi S, Kawahara T.

PLoS One. 2013 Aug 8;8(8):e68310. doi: 10.1371/journal.pone.0068310. eCollection 2013.

20.

Homoeologous relationship of rye chromosome arms as detected with wheat PLUG markers.

Li J, Endo TR, Saito M, Ishikawa G, Nakamura T, Nasuda S.

Chromosoma. 2013 Dec;122(6):555-64. doi: 10.1007/s00412-013-0428-7. Epub 2013 Jul 20.

PMID:
23873186
21.

PCR and sequence analysis of barley chromosome 2H subjected to the gametocidal action of chromosome 2C.

Joshi GP, Endo TR, Nasuda S.

Theor Appl Genet. 2013 Sep;126(9):2381-90. doi: 10.1007/s00122-013-2142-5. Epub 2013 Jun 14.

PMID:
23765160
22.

Dissection of rye chromosomes by the gametocidal system.

Li J, Nasuda S, Endo TR.

Genes Genet Syst. 2013;88(6):321-7.

23.
24.

Discovery of high-confidence single nucleotide polymorphisms from large-scale de novo analysis of leaf transcripts of Aegilops tauschii, a wild wheat progenitor.

Iehisa JC, Shimizu A, Sato K, Nasuda S, Takumi S.

DNA Res. 2012 Dec;19(6):487-97. doi: 10.1093/dnares/dss028. Epub 2012 Nov 2.

25.
26.
27.

Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids.

Sanei M, Pickering R, Kumke K, Nasuda S, Houben A.

Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):E498-505. doi: 10.1073/pnas.1103190108. Epub 2011 Jul 11.

28.

Plant B chromosomes.

Houben A, Nasuda S, Endo TR.

Methods Mol Biol. 2011;701:97-111. doi: 10.1007/978-1-61737-957-4_5.

PMID:
21181526
29.

A cytological map of the short arm of rye chromosome 1R constructed with 1R dissection stocks of common wheat and PCR-based markers.

Gyawali YP, Nasuda S, Endo TR.

Cytogenet Genome Res. 2010 Jul;129(1-3):224-33. doi: 10.1159/000314556. Epub 2010 Jun 11.

PMID:
20551617
30.

Molecular mapping of the suppressor gene Igc1 to the gametocidal gene Gc3-C1 in common wheat.

Yamano S, Nitta M, Tsujimoto H, Ishikawa G, Nakamura T, Endo TR, Nasuda S.

Genes Genet Syst. 2010 Feb;85(1):43-53.

32.
33.

The evolution of the hexaploid grass Zingeriakochii (Mez) Tzvel. (2n=12) was accompanied by complex hybridization and uniparental loss of ribosomal DNA.

Kotseruba V, Pistrick K, Blattner FR, Kumke K, Weiss O, Rutten T, Fuchs J, Endo T, Nasuda S, Ghukasyan A, Houben A.

Mol Phylogenet Evol. 2010 Jul;56(1):146-55. doi: 10.1016/j.ympev.2010.01.003. Epub 2010 Jan 11.

PMID:
20060916
34.

Dissection of barley chromosome 3H in common wheat and a comparison of 3H physical and genetic maps.

Sakai K, Nasuda S, Sato K, Endo TR.

Genes Genet Syst. 2009 Feb;84(1):25-34.

35.

Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers.

Ishikawa G, Nakamura T, Ashida T, Saito M, Nasuda S, Endo TR, Wu J, Matsumoto T.

Theor Appl Genet. 2009 Feb;118(3):499-514. doi: 10.1007/s00122-008-0916-y. Epub 2008 Nov 1.

PMID:
19057889
36.

Dissection of rye chromosome 1R in common wheat.

Tsuchida M, Fukushima T, Nasuda S, Masoudi-Nejad A, Ishikawa G, Nakamura T, Endo TR.

Genes Genet Syst. 2008 Feb;83(1):43-53.

37.

Dissection of rye B chromosomes, and nondisjunction properties of the dissected segments in a common wheat background.

Endo TR, Nasuda S, Jones N, Dou Q, Akahori A, Wakimoto M, Tanaka H, Niwa K, Tsujimoto H.

Genes Genet Syst. 2008 Feb;83(1):23-30.

38.

Structures of the three homoeologous loci of wheat benzoxazinone biosynthetic genes TaBx3 and TaBx4 and characterization of their promoter sequences.

Nomura T, Nasuda S, Kawaura K, Ogihara Y, Kato N, Sato F, Kojima T, Toyoda A, Iwamura H, Endo TR.

Theor Appl Genet. 2008 Feb;116(3):373-81. Epub 2007 Nov 27.

PMID:
18040657
39.

The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene.

Shitsukawa N, Ikari C, Shimada S, Kitagawa S, Sakamoto K, Saito H, Ryuto H, Fukunishi N, Abe T, Takumi S, Nasuda S, Murai K.

Genes Genet Syst. 2007 Apr;82(2):167-70.

40.

Dissection of barley chromosome 5H in common wheat.

Ashida T, Nasuda S, Sato K, Endo TR.

Genes Genet Syst. 2007 Apr;82(2):123-33.

41.

CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley.

Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR.

Chromosoma. 2007 Jun;116(3):275-83. Epub 2007 Feb 15.

PMID:
17483978
42.

Chromosome-specific satellite sequences in Turritis glabra.

Kawabe A, Nasuda S.

Genes Genet Syst. 2006 Aug;81(4):287-90.

43.
44.
45.

Chromosomal assignment and deletion mapping of barley EST markers.

Nasuda S, Kikkawa Y, Ashida T, Islam AK, Sato K, Endo TR.

Genes Genet Syst. 2005 Oct;80(5):357-66.

46.

Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome.

Ogihara Y, Yamazaki Y, Murai K, Kanno A, Terachi T, Shiina T, Miyashita N, Nasuda S, Nakamura C, Mori N, Takumi S, Murata M, Futo S, Tsunewaki K.

Nucleic Acids Res. 2005 Oct 31;33(19):6235-50. Print 2005.

47.

An alternative to radiation hybrid mapping for large-scale genome analysis in barley.

Masoudi-Nejad A, Nasuda S, Bihoreau MT, Waugh R, Endo TR.

Mol Genet Genomics. 2005 Dec;274(6):589-94. Epub 2005 Oct 18.

PMID:
16231150
48.

Stable barley chromosomes without centromeric repeats.

Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR.

Proc Natl Acad Sci U S A. 2005 Jul 12;102(28):9842-7. Epub 2005 Jul 5.

49.

Structure and genomic organization of centromeric repeats in Arabidopsis species.

Kawabe A, Nasuda S.

Mol Genet Genomics. 2005 Feb;272(6):593-602. Epub 2004 Dec 7.

PMID:
15586291
50.

A PCR-based marker for targeting small rye segments in wheat background.

Katto CM, Endo TR, Nasuda S.

Genes Genet Syst. 2004 Aug;79(4):245-50.

Supplemental Content

Loading ...
Support Center