Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 33

1.

Cohesin Disrupts Polycomb-Dependent Chromosome Interactions in Embryonic Stem Cells.

Rhodes JDP, Feldmann A, Hernández-Rodríguez B, Díaz N, Brown JM, Fursova NA, Blackledge NP, Prathapan P, Dobrinic P, Huseyin MK, Szczurek A, Kruse K, Nasmyth KA, Buckle VJ, Vaquerizas JM, Klose RJ.

Cell Rep. 2020 Jan 21;30(3):820-835.e10. doi: 10.1016/j.celrep.2019.12.057.

2.

Scc2 counteracts a Wapl-independent mechanism that releases cohesin from chromosomes during G1.

Srinivasan M, Petela NJ, Scheinost JC, Collier J, Voulgaris M, B Roig M, Beckouët F, Hu B, Nasmyth KA.

Elife. 2019 Jun 21;8. pii: e44736. doi: 10.7554/eLife.44736.

3.

Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation.

Cuartero S, Weiss FD, Dharmalingam G, Guo Y, Ing-Simmons E, Masella S, Robles-Rebollo I, Xiao X, Wang YF, Barozzi I, Djeghloul D, Amano MT, Niskanen H, Petretto E, Dowell RD, Tachibana K, Kaikkonen MU, Nasmyth KA, Lenhard B, Natoli G, Fisher AG, Merkenschlager M.

Nat Immunol. 2018 Sep;19(9):932-941. doi: 10.1038/s41590-018-0184-1. Epub 2018 Aug 20.

4.

Scc2 Is a Potent Activator of Cohesin's ATPase that Promotes Loading by Binding Scc1 without Pds5.

Petela NJ, Gligoris TG, Metson J, Lee BG, Voulgaris M, Hu B, Kikuchi S, Chapard C, Chen W, Rajendra E, Srinivisan M, Yu H, Löwe J, Nasmyth KA.

Mol Cell. 2018 Jun 21;70(6):1134-1148.e7. doi: 10.1016/j.molcel.2018.05.022.

5.

The Cohesin Ring Uses Its Hinge to Organize DNA Using Non-topological as well as Topological Mechanisms.

Srinivasan M, Scheinost JC, Petela NJ, Gligoris TG, Wissler M, Ogushi S, Collier JE, Voulgaris M, Kurze A, Chan KL, Hu B, Costanzo V, Nasmyth KA.

Cell. 2018 May 31;173(6):1508-1519.e18. doi: 10.1016/j.cell.2018.04.015. Epub 2018 May 10.

6.

Cohesin Can Remain Associated with Chromosomes during DNA Replication.

Rhodes JDP, Haarhuis JHI, Grimm JB, Rowland BD, Lavis LD, Nasmyth KA.

Cell Rep. 2017 Sep 19;20(12):2749-2755. doi: 10.1016/j.celrep.2017.08.092.

7.

Evolution of condensin and cohesin complexes driven by replacement of Kite by Hawk proteins.

Wells JN, Gligoris TG, Nasmyth KA, Marsh JA.

Curr Biol. 2017 Jan 9;27(1):R17-R18. doi: 10.1016/j.cub.2016.11.050.

10.

FAR-reaching discoveries about the regulation of START.

Nasmyth KA.

Cell. 1990 Dec 21;63(6):1117-20. Review. No abstract available. Erratum in: Cell 1991 Mar 8;64(5):following 1046.

PMID:
2261635
11.

Characterization of a transcription factor involved in mother cell specific transcription of the yeast HO gene.

Stillman DJ, Bankier AT, Seddon A, Groenhout EG, Nasmyth KA.

EMBO J. 1988 Feb;7(2):485-94.

12.
13.

Identification and comparison of two sequence elements that confer cell-type specific transcription in yeast.

Miller AM, MacKay VL, Nasmyth KA.

Nature. 1985 Apr 18-24;314(6012):598-603.

PMID:
3887184
14.
15.

Role of DNA replication in the repression of silent mating type loci in yeast.

Miller AM, Nasmyth KA.

Nature. 1984 Nov 15-21;312(5991):247-51.

PMID:
6390211
16.

Regulation of mating-type information in yeast. Negative control requiring sequences both 5' and 3' to the regulated region.

Abraham J, Nasmyth KA, Strathern JN, Klar AJ, Hicks JB.

J Mol Biol. 1984 Jul 5;176(3):307-31.

PMID:
6379190
17.

The role of DNA replication in the repression of the yeast mating-type silent loci.

Miller AM, Sternglanz R, Nasmyth KA.

Cold Spring Harb Symp Quant Biol. 1984;49:105-13. No abstract available.

PMID:
6397296
18.

Sites required for position-effect regulation of mating-type information in yeast.

Abraham J, Feldman J, Nasmyth KA, Strathern JN, Klar AJ, Broach JR, Hicks JB.

Cold Spring Harb Symp Quant Biol. 1983;47 Pt 2:989-98. No abstract available.

PMID:
6345082
19.

Localization and sequence analysis of yeast origins of DNA replication.

Broach JR, Li YY, Feldman J, Jayaram M, Abraham J, Nasmyth KA, Hicks JB.

Cold Spring Harb Symp Quant Biol. 1983;47 Pt 2:1165-73. No abstract available.

PMID:
6345070
20.

Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus.

Strathern JN, Klar AJ, Hicks JB, Abraham JA, Ivy JM, Nasmyth KA, McGill C.

Cell. 1982 Nov;31(1):183-92.

PMID:
6297747
22.

Molecular genetics of yeast mating type.

Nasmyth KA.

Annu Rev Genet. 1982;16:439-500. Review. No abstract available.

PMID:
6760802
23.

The sequence of the DNAs coding for the mating-type loci of Saccharomyces cerevisiae.

Astell CR, Ahlstrom-Jonasson L, Smith M, Tatchell K, Nasmyth KA, Hall BD.

Cell. 1981 Nov;27(1 Pt 2):15-23.

PMID:
7034964
24.

In vitro mutation analysis of the mating-type locus in yeast.

Tatchell K, Nasmyth KA, Hall BD, Astell C, Smith M.

Cell. 1981 Nov;27(1 Pt 2):25-35.

PMID:
6276023
25.

A position effect in the control of transcription at yeast mating type loci.

Nasmyth KA, Tatchell K, Hall BD, Astell C, Smith M.

Nature. 1981 Jan 22;289(5795):244-50.

PMID:
6256656
26.

Physical analysis of mating-type loci in Saccharomyces cerevisiae.

Nasmyth KA, Tatchell K, Hall BD, Astell C, Smith M.

Cold Spring Harb Symp Quant Biol. 1981;45 Pt 2:961-81. No abstract available.

PMID:
7021055
27.

Isolation of a gene from Drosophila by complementation in yeast.

Henikoff S, Tatchell K, Hall BD, Nasmyth KA.

Nature. 1981 Jan 1;289(5793):33-7.

PMID:
6256646
28.

Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene.

Nasmyth KA, Reed SI.

Proc Natl Acad Sci U S A. 1980 Apr;77(4):2119-23.

29.

The structure of transposable yeast mating type loci.

Nasmyth KA, Tatchell K.

Cell. 1980 Mar;19(3):753-64.

PMID:
6244896
32.

Saccharomyces cerevisiae cell cycle mutant cdc9 is defective in DNA ligase.

Johnston LH, Nasmyth KA.

Nature. 1978 Aug 31;274(5674):891-3. No abstract available.

PMID:
355897
33.

Supplemental Content

Loading ...
Support Center