Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 26

1.

Suppression of Structural Change upon S1-T1 Conversion Assists the Thermally Activated Delayed Fluorescence Process in Carbazole-Benzonitrile Derivatives.

Saigo M, Miyata K, Tanaka S, Nakanotani H, Adachi C, Onda K.

J Phys Chem Lett. 2019 May 16;10(10):2475-2480. doi: 10.1021/acs.jpclett.9b00810. Epub 2019 May 2.

PMID:
30973013
2.

Photoluminescence Quenching Probes Spin Conversion and Exciton Dynamics in Thermally Activated Delayed Fluorescence Materials.

Yurash B, Nakanotani H, Olivier Y, Beljonne D, Adachi C, Nguyen TQ.

Adv Mater. 2019 May;31(21):e1804490. doi: 10.1002/adma.201804490. Epub 2019 Apr 8.

PMID:
30957291
3.

Photostable and highly emissive glassy organic dots exhibiting thermally activated delayed fluorescence.

Tsuchiya Y, Ikesue K, Nakanotani H, Adachi C.

Chem Commun (Camb). 2019 Apr 30;55(36):5215-5218. doi: 10.1039/c9cc01420a.

PMID:
30896723
4.

Efficient and stable sky-blue delayed fluorescence organic light-emitting diodes with CIEy below 0.4.

Chan CY, Tanaka M, Nakanotani H, Adachi C.

Nat Commun. 2018 Nov 28;9(1):5036. doi: 10.1038/s41467-018-07482-6.

5.

The Importance of Excited-State Energy Alignment for Efficient Exciplex Systems Based on a Study of Phenylpyridinato Boron Derivatives.

Mamada M, Tian G, Nakanotani H, Su J, Adachi C.

Angew Chem Int Ed Engl. 2018 Sep 17;57(38):12380-12384. doi: 10.1002/anie.201804218. Epub 2018 Aug 28.

PMID:
30062688
6.

Trifluoromethane modification of thermally activated delayed fluorescence molecules for high-efficiency blue organic light-emitting diodes.

Yokoyama M, Inada K, Tsuchiya Y, Nakanotani H, Adachi C.

Chem Commun (Camb). 2018 Jul 19;54(59):8261-8264. doi: 10.1039/c8cc03425g.

PMID:
29989113
7.

Exploiting Singlet Fission in Organic Light-Emitting Diodes.

Nagata R, Nakanotani H, Potscavage WJ Jr, Adachi C.

Adv Mater. 2018 Jul 5:e1801484. doi: 10.1002/adma.201801484. [Epub ahead of print]

PMID:
29974520
8.

Excited state engineering for efficient reverse intersystem crossing.

Noda H, Nakanotani H, Adachi C.

Sci Adv. 2018 Jun 22;4(6):eaao6910. doi: 10.1126/sciadv.aao6910. eCollection 2018 Jun.

9.

Well-Ordered 4CzIPN ((4s,6s)-2,4,5,6-Tetra(9-H-carbazol-9-yl)isophthalonitrile) Layers: Molecular Orientation, Electronic Structure, and Angular Distribution of Photoluminescence.

Hasegawa Y, Yamada Y, Sasaki M, Hosokai T, Nakanotani H, Adachi C.

J Phys Chem Lett. 2018 Feb 15;9(4):863-867. doi: 10.1021/acs.jpclett.7b03232. Epub 2018 Feb 7.

PMID:
29370700
10.

Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts.

Cui LS, Ruan SB, Bencheikh F, Nagata R, Zhang L, Inada K, Nakanotani H, Liao LS, Adachi C.

Nat Commun. 2017 Dec 21;8(1):2250. doi: 10.1038/s41467-017-02419-x.

11.

Donor-σ-Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion.

Geng Y, D'Aleo A, Inada K, Cui LS, Kim JU, Nakanotani H, Adachi C.

Angew Chem Int Ed Engl. 2017 Dec 22;56(52):16536-16540. doi: 10.1002/anie.201708876. Epub 2017 Nov 23.

PMID:
29105906
12.

Highly Efficient Thermally Activated Delayed Fluorescence from an Excited-State Intramolecular Proton Transfer System.

Mamada M, Inada K, Komino T, Potscavage WJ Jr, Nakanotani H, Adachi C.

ACS Cent Sci. 2017 Jul 26;3(7):769-777. doi: 10.1021/acscentsci.7b00183. Epub 2017 Jul 7.

13.

Evidence and mechanism of efficient thermally activated delayed fluorescence promoted by delocalized excited states.

Hosokai T, Matsuzaki H, Nakanotani H, Tokumaru K, Tsutsui T, Furube A, Nasu K, Nomura H, Yahiro M, Adachi C.

Sci Adv. 2017 May 10;3(5):e1603282. doi: 10.1126/sciadv.1603282. eCollection 2017 May.

14.

Controlling Singlet-Triplet Energy Splitting for Deep-Blue Thermally Activated Delayed Fluorescence Emitters.

Cui LS, Nomura H, Geng Y, Kim JU, Nakanotani H, Adachi C.

Angew Chem Int Ed Engl. 2017 Feb 1;56(6):1571-1575. doi: 10.1002/anie.201609459. Epub 2016 Dec 30.

PMID:
28035781
15.

Near-Infrared Electrophosphorescence up to 1.1 µm using a Thermally Activated Delayed Fluorescence Molecule as Triplet Sensitizer.

Nagata R, Nakanotani H, Adachi C.

Adv Mater. 2017 Feb;29(5). doi: 10.1002/adma.201604265. Epub 2016 Nov 18.

PMID:
27859702
16.

Corrigendum: Benzimidazobenzothiazole-based Bipolar Hosts to Harvest Nearly All of the Excitons from Blue Delayed Fluorescence and Phosphorescent Organic Light-Emitting Diodes.

Cui LS, Kim JU, Nomura H, Nakanotani H, Adachi C.

Angew Chem Int Ed Engl. 2016 Sep 26;55(40):12136. doi: 10.1002/anie.201605553. Epub 2016 Jul 4. No abstract available.

PMID:
27643506
17.

Boron Difluoride Complexes of Expanded N-Confused Calix[n]phyrins That Demonstrate Unique Luminescent and Lasing Properties.

Ishida M, Omagari T, Hirosawa R, Jono K, Sung YM, Yasutake Y, Uno H, Toganoh M, Nakanotani H, Fukatsu S, Kim D, Furuta H.

Angew Chem Int Ed Engl. 2016 Sep 19;55(39):12045-9. doi: 10.1002/anie.201606246. Epub 2016 Aug 17.

PMID:
27530732
18.

Benzimidazobenzothiazole-Based Bipolar Hosts to Harvest Nearly All of the Excitons from Blue Delayed Fluorescence and Phosphorescent Organic Light-Emitting Diodes.

Cui LS, Kim JU, Nomura H, Nakanotani H, Adachi C.

Angew Chem Int Ed Engl. 2016 Jun 6;55(24):6864-8. doi: 10.1002/anie.201601136. Epub 2016 Apr 21. Erratum in: Angew Chem Int Ed Engl. 2016 Sep 26;55(40):12136.

PMID:
27101424
19.

Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers.

Nakanotani H, Furukawa T, Morimoto K, Adachi C.

Sci Adv. 2016 Feb 26;2(2):e1501470. doi: 10.1126/sciadv.1501470. eCollection 2016 Feb.

20.

Low threshold amplified spontaneous emission and ambipolar charge transport in non-volatile liquid fluorene derivatives.

Ribierre JC, Zhao L, Inoue M, Schwartz PO, Kim JH, Yoshida K, Sandanayaka AS, Nakanotani H, Mager L, Méry S, Adachi C.

Chem Commun (Camb). 2016 Feb 21;52(15):3103-6. doi: 10.1039/c5cc08331a.

PMID:
26734693
21.

Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs.

Furukawa T, Nakanotani H, Inoue M, Adachi C.

Sci Rep. 2015 Feb 12;5:8429. doi: 10.1038/srep08429.

22.

High-efficiency white organic light-emitting diodes based on a blue thermally activated delayed fluorescent emitter combined with green and red fluorescent emitters.

Higuchi T, Nakanotani H, Adachi C.

Adv Mater. 2015 Mar 25;27(12):2019-23. doi: 10.1002/adma.201404967. Epub 2015 Feb 9.

PMID:
25664428
23.

Highly efficient blue electroluminescence based on thermally activated delayed fluorescence.

Hirata S, Sakai Y, Masui K, Tanaka H, Lee SY, Nomura H, Nakamura N, Yasumatsu M, Nakanotani H, Zhang Q, Shizu K, Miyazaki H, Adachi C.

Nat Mater. 2015 Mar;14(3):330-6. doi: 10.1038/nmat4154. Epub 2014 Dec 8.

PMID:
25485987
24.

High-efficiency organic light-emitting diodes with fluorescent emitters.

Nakanotani H, Higuchi T, Furukawa T, Masui K, Morimoto K, Numata M, Tanaka H, Sagara Y, Yasuda T, Adachi C.

Nat Commun. 2014 May 30;5:4016. doi: 10.1038/ncomms5016.

PMID:
24874292
25.

Promising operational stability of high-efficiency organic light-emitting diodes based on thermally activated delayed fluorescence.

Nakanotani H, Masui K, Nishide J, Shibata T, Adachi C.

Sci Rep. 2013;3:2127. doi: 10.1038/srep02127. Erratum in: Sci Rep. 2014;(4):3640.

26.

Formation of organic crystalline nanopillar arrays and their application to organic photovoltaic cells.

Hirade M, Nakanotani H, Yahiro M, Adachi C.

ACS Appl Mater Interfaces. 2011 Jan;3(1):80-3. doi: 10.1021/am100915s. Epub 2010 Dec 31.

PMID:
21194207

Supplemental Content

Loading ...
Support Center