Format

Send to

Choose Destination
Science. 2017 Aug 25;357(6353):784-788. doi: 10.1126/science.aal4346. Epub 2017 Jul 20.

Optical imaging of surface chemistry and dynamics in confinement.

Author information

1
Laboratory for Fundamental BioPhotonics, Institute of Bioengineering, and Institute of Materials Science, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
2
Laboratory for Fundamental BioPhotonics, Institute of Bioengineering, and Institute of Materials Science, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. sylvie.roke@epfl.ch.

Abstract

We imaged the interfacial structure and dynamics of water in a microscopically confined geometry, in three dimensions and on millisecond time scales, with a structurally illuminated wide-field second harmonic microscope. The second harmonic images reported on the orientational order of interfacial water, induced by charge-dipole interactions between water molecules and surface charges. The images were converted into surface potential maps. Spatially resolved surface acid dissociation constant (pKa,s) values were determined for the silica deprotonation reaction by following pH-induced chemical changes on the curved and confined surfaces of a glass microcapillary immersed in aqueous solutions. These values ranged from 2.3 to 10.7 along the wall of a single capillary because of surface heterogeneities. Water molecules that rotate along an oscillating external electric field were also imaged.

Comment in

PMID:
28729352
DOI:
10.1126/science.aal4346

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center