Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 11

1.

A Single Biosynthetic Gene Cluster Is Responsible for the Production of Bagremycin Antibiotics and Ferroverdin Iron Chelators.

Martinet L, Naômé A, Deflandre B, Maciejewska M, Tellatin D, Tenconi E, Smargiasso N, de Pauw E, van Wezel GP, Rigali S.

MBio. 2019 Aug 13;10(4). pii: e01230-19. doi: 10.1128/mBio.01230-19.

2.

Complete Genome Sequence of Streptomyces lunaelactis MM109T, Isolated from Cave Moonmilk Deposits.

Naômé A, Maciejewska M, Calusinska M, Martinet L, Anderssen S, Adam D, Tenconi E, Deflandre B, Coppieters W, Karim L, Hanikenne M, Baurain D, Delfosse P, van Wezel GP, Rigali S.

Genome Announc. 2018 May 24;6(21). pii: e00435-18. doi: 10.1128/genomeA.00435-18.

3.

Isolation, Characterization, and Antibacterial Activity of Hard-to-Culture Actinobacteria from Cave Moonmilk Deposits.

Adam D, Maciejewska M, Naômé A, Martinet L, Coppieters W, Karim L, Baurain D, Rigali S.

Antibiotics (Basel). 2018 Mar 22;7(2). pii: E28. doi: 10.3390/antibiotics7020028.

4.

Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery.

Rigali S, Anderssen S, Naômé A, van Wezel GP.

Biochem Pharmacol. 2018 Jul;153:24-34. doi: 10.1016/j.bcp.2018.01.007. Epub 2018 Jan 5. Review.

PMID:
29309762
5.

Assessment of the Potential Role of Streptomyces in Cave Moonmilk Formation.

Maciejewska M, Adam D, Naômé A, Martinet L, Tenconi E, Całusińska M, Delfosse P, Hanikenne M, Baurain D, Compère P, Carnol M, Barton HA, Rigali S.

Front Microbiol. 2017 Jun 29;8:1181. doi: 10.3389/fmicb.2017.01181. eCollection 2017.

6.

A Phenotypic and Genotypic Analysis of the Antimicrobial Potential of Cultivable Streptomyces Isolated from Cave Moonmilk Deposits.

Maciejewska M, Adam D, Martinet L, Naômé A, Całusińska M, Delfosse P, Carnol M, Barton HA, Hayette MP, Smargiasso N, De Pauw E, Hanikenne M, Baurain D, Rigali S.

Front Microbiol. 2016 Sep 21;7:1455. eCollection 2016.

7.

Systematic hierarchical coarse-graining with the inverse Monte Carlo method.

Lyubartsev AP, Naômé A, Vercauteren DP, Laaksonen A.

J Chem Phys. 2015 Dec 28;143(24):243120. doi: 10.1063/1.4934095.

PMID:
26723605
8.

Correction to a solvent-mediated coarse-grained model of DNA derived with the systematic newton inversion method.

Naômé A, Laaksonen A, Vercauteren DP.

J Chem Theory Comput. 2015 Jun 9;11(6):2889. doi: 10.1021/acs.jctc.5b00403. No abstract available.

PMID:
26575578
9.

A coarse-grained simulation study of the structures, energetics, and dynamics of linear and circular DNA with its ions.

Naômé A, Laaksonen A, Vercauteren DP.

J Chem Theory Comput. 2015 Jun 9;11(6):2813-26. doi: 10.1021/acs.jctc.5b00113. Epub 2015 May 14.

PMID:
26575574
10.

A Solvent-Mediated Coarse-Grained Model of DNA Derived with the Systematic Newton Inversion Method.

Naômé A, Laaksonen A, Vercauteren DP.

J Chem Theory Comput. 2014 Aug 12;10(8):3541-9. doi: 10.1021/ct500222s. Erratum in: J Chem Theory Comput. 2015 Jun 9;11(6):2889.

PMID:
26588318
11.

Molecular dynamics simulation of 8-oxoguanine containing DNA fragments reveals altered hydration and ion binding patterns.

Naômé A, Schyman P, Laaksonen A, Vercauteren DP.

J Phys Chem B. 2010 Apr 15;114(14):4789-801. doi: 10.1021/jp1000539. Erratum in: J Phys Chem B. 2010 May 20;114(19):6763.

PMID:
20307074

Supplemental Content

Support Center