Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 158

1.

Dantrolene Requires Mg2+ and ATP To Inhibit the Ryanodine Receptor.

Diszházi G, Magyar ZÉ, Mótyán JA, Csernoch L, Jóna I, Nánási PP, Almássy J.

Mol Pharmacol. 2019 Sep;96(3):401-407. doi: 10.1124/mol.119.116475. Epub 2019 Jul 23.

PMID:
31337666
2.

Safety concerns of diamide insecticides.

Almássy J, Csernoch L, Nánási PP.

Toxicol Sci. 2019 Mar 4. pii: kfz061. doi: 10.1093/toxsci/kfz061. [Epub ahead of print] No abstract available.

PMID:
30830218
3.

Expression of BK channels and Na+-K+ pumps in the apical membrane of lacrimal acinar cells suggests a new molecular mechanism for primary tear-secretion.

Almássy J, Diszházi G, Skaliczki M, Márton I, Magyar ZÉ, Nánási PP, Yule DI.

Ocul Surf. 2019 Apr;17(2):272-277. doi: 10.1016/j.jtos.2019.01.007. Epub 2019 Jan 24.

PMID:
30685438
4.

Brief structural insight into the allosteric gating mechanism of BK (Slo1) channel 1.

Almássy J, Nánási PP.

Can J Physiol Pharmacol. 2019 Jun;97(6):498-502. doi: 10.1139/cjpp-2018-0516. Epub 2018 Dec 5.

PMID:
30517027
5.

Transient receptor potential melastatin 4 channel inhibitor 9-phenanthrol inhibits K+ but not Ca2+ currents in canine ventricular myocytes.

Veress R, Baranyai D, Hegyi B, Kistamás K, Dienes C, Magyar J, Bányász T, Nánási PP, Szentandrássy N, Horváth B.

Can J Physiol Pharmacol. 2018 Oct;96(10):1022-1029. doi: 10.1139/cjpp-2018-0049. Epub 2018 May 28.

PMID:
29806985
6.

Correction: Experimentally-Based Computational Investigation into Beat-To-Beat Variability in Ventricular Repolarization and Its Response to Ionic Current Inhibition.

Pueyo E, Dangerfield CE, Britton OJ, Virág L, Kistamás K, Szentandrássy N, Jost N, Varró A, Nánási PP, Burrage K, Rodríguez B.

PLoS One. 2018 May 17;13(5):e0197871. doi: 10.1371/journal.pone.0197871. eCollection 2018.

7.

Effect of the intracellular calcium concentration chelator BAPTA acetoxy-methylester on action potential duration in canine ventricular myocytes.

Horvath B, Szentandrassy N, Veress R, Baranyai D, Kistamas K, Almassy J, Toth A, Magyar J, Banyasz T, Nanasi PP.

J Physiol Pharmacol. 2018 Feb;69(1):99-107. doi: 10.26402/jpp.2018.1.11. Epub 2018 May 12.

8.

New saliva secretion model based on the expression of Na+-K+ pump and K+ channels in the apical membrane of parotid acinar cells.

Almássy J, Siguenza E, Skaliczki M, Matesz K, Sneyd J, Yule DI, Nánási PP.

Pflugers Arch. 2018 Apr;470(4):613-621. doi: 10.1007/s00424-018-2109-0. Epub 2018 Jan 17.

PMID:
29344775
9.

Inotropic effect of NCX inhibition depends on the relative activity of the reverse NCX assessed by a novel inhibitor ORM-10962 on canine ventricular myocytes.

Oravecz K, Kormos A, Gruber A, Márton Z, Kohajda Z, Mirzaei L, Jost N, Levijoki J, Pollesello P, Koskelainen T, Otsomaa L, Tóth A, Papp JG, Nánási PP, Antoons G, Varró A, Acsai K, Nagy N.

Eur J Pharmacol. 2018 Jan 5;818:278-286. doi: 10.1016/j.ejphar.2017.10.039. Epub 2017 Oct 21.

PMID:
29066415
10.

Activation of TRPV3 Regulates Inflammatory Actions of Human Epidermal Keratinocytes.

Szöllősi AG, Vasas N, Angyal Á, Kistamás K, Nánási PP, Mihály J, Béke G, Herczeg-Lisztes E, Szegedi A, Kawada N, Yanagida T, Mori T, Kemény L, Bíró T.

J Invest Dermatol. 2018 Feb;138(2):365-374. doi: 10.1016/j.jid.2017.07.852. Epub 2017 Sep 28.

11.

Frequency-dependent effects of omecamtiv mecarbil on cell shortening of isolated canine ventricular cardiomyocytes.

Horváth B, Szentandrássy N, Veress R, Almássy J, Magyar J, Bányász T, Tóth A, Papp Z, Nánási PP.

Naunyn Schmiedebergs Arch Pharmacol. 2017 Dec;390(12):1239-1246. doi: 10.1007/s00210-017-1422-z. Epub 2017 Sep 22.

PMID:
28940010
12.

Beat-to-beat variability of cardiac action potential duration: underlying mechanism and clinical implications.

Nánási PP, Magyar J, Varró A, Ördög B.

Can J Physiol Pharmacol. 2017 Oct;95(10):1230-1235. doi: 10.1139/cjpp-2016-0597. Epub 2017 Jul 26. Review.

PMID:
28746810
13.

Ca2+-activated Cl- current is antiarrhythmic by reducing both spatial and temporal heterogeneity of cardiac repolarization.

Hegyi B, Horváth B, Váczi K, Gönczi M, Kistamás K, Ruzsnavszky F, Veress R, Izu LT, Chen-Izu Y, Bányász T, Magyar J, Csernoch L, Nánási PP, Szentandrássy N.

J Mol Cell Cardiol. 2017 Aug;109:27-37. doi: 10.1016/j.yjmcc.2017.06.014. Epub 2017 Jun 29.

14.

The Effect of a Novel Highly Selective Inhibitor of the Sodium/Calcium Exchanger (NCX) on Cardiac Arrhythmias in In Vitro and In Vivo Experiments.

Kohajda Z, Farkas-Morvay N, Jost N, Nagy N, Geramipour A, Horváth A, Varga RS, Hornyik T, Corici C, Acsai K, Horváth B, Prorok J, Ördög B, Déri S, Tóth D, Levijoki J, Pollesello P, Koskelainen T, Otsomaa L, Tóth A, Baczkó I, Leprán I, Nánási PP, Papp JG, Varró A, Virág L.

PLoS One. 2016 Nov 10;11(11):e0166041. doi: 10.1371/journal.pone.0166041. eCollection 2016.

15.

Dose-dependent electrophysiological effects of the myosin activator omecamtiv mecarbil in canine ventricular cardiomyocytes.

Szentandrassy N, Horvath B, Vaczi K, Kistamas K, Masuda L, Magyar J, Banyasz T, Papp Z, Nanasi PP.

J Physiol Pharmacol. 2016 Aug;67(4):483-489.

16.

Sarcolemmal Ca(2+)-entry through L-type Ca(2+) channels controls the profile of Ca(2+)-activated Cl(-) current in canine ventricular myocytes.

Horváth B, Váczi K, Hegyi B, Gönczi M, Dienes B, Kistamás K, Bányász T, Magyar J, Baczkó I, Varró A, Seprényi G, Csernoch L, Nánási PP, Szentandrássy N.

J Mol Cell Cardiol. 2016 Aug;97:125-39. doi: 10.1016/j.yjmcc.2016.05.006. Epub 2016 May 14.

PMID:
27189885
17.

Experimentally-Based Computational Investigation into Beat-To-Beat Variability in Ventricular Repolarization and Its Response to Ionic Current Inhibition.

Pueyo E, Dangerfield CE, Britton OJ, Virág L, Kistamás K, Szentandrássy N, Jost N, Varró A, Nánási PP, Burrage K, Rodríguez B.

PLoS One. 2016 Mar 28;11(3):e0151461. doi: 10.1371/journal.pone.0151461. eCollection 2016. Erratum in: PLoS One. 2018 May 17;13(5):e0197871.

18.

Role of the dysfunctional ryanodine receptor - Na(+)-Ca(2+)exchanger axis in progression of cardiovascular diseases: What we can learn from pharmacological studies?

Acsai K, Ördög B, Varró A, Nánási PP.

Eur J Pharmacol. 2016 May 15;779:91-101. doi: 10.1016/j.ejphar.2016.03.016. Epub 2016 Mar 9. Review.

PMID:
26970182
19.

Concept of relative variability of cardiac action potential duration and its test under various experimental conditions.

Magyar J, Kistamás K, Váczi K, Hegyi B, Horváth B, Bányász T, Nánási PP, Szentandrássy N.

Gen Physiol Biophys. 2016 Jan;35(1):55-62. doi: 10.4149/gpb_2015019. Epub 2015 Oct 22.

PMID:
26492070
20.

Oxidative shift in tissue redox potential increases beat-to-beat variability of action potential duration.

Kistamás K, Hegyi B, Váczi K, Horváth B, Bányász T, Magyar J, Szentandrássy N, Nánási PP.

Can J Physiol Pharmacol. 2015 Jul;93(7):563-8. doi: 10.1139/cjpp-2014-0531. Epub 2015 Feb 9.

PMID:
25996357
21.

Cytosolic calcium changes affect the incidence of early afterdepolarizations in canine ventricular myocytes.

Horváth B, Hegyi B, Kistamás K, Váczi K, Bányász T, Magyar J, Szentandrássy N, Nánási PP.

Can J Physiol Pharmacol. 2015 Jul;93(7):527-34. doi: 10.1139/cjpp-2014-0511. Epub 2015 Feb 9.

PMID:
25928391
22.

Changes in intracellular calcium concentration influence beat-to-beat variability of action potential duration in canine ventricular myocytes.

Kistamas K, Szentandrassy N, Hegyi B, Vaczi K, Ruzsnavszky F, Horvath B, Banyasz T, Nanasi PP, Magyar J.

J Physiol Pharmacol. 2015 Feb;66(1):73-81.

PMID:
25716967
23.

The Janus face of adenosine: antiarrhythmic and proarrhythmic actions.

Szentmiklosi AJ, Galajda Z, Cseppento Á, Gesztelyi R, Susán Z, Hegyi B, Nánási PP.

Curr Pharm Des. 2015;21(8):965-76. Review.

PMID:
25354187
24.

Role of gap junction channel in the development of beat-to-beat action potential repolarization variability and arrhythmias.

Magyar J, Banyasz T, Szentandrassy N, Kistamas K, Nanasi PP, Satin J.

Curr Pharm Des. 2015;21(8):1042-52. Review.

PMID:
25354184
25.

Chemistry, physiology, and pharmacology of β-adrenergic mechanisms in the heart. Why are β-blocker antiarrhythmics superior?

Szentmiklosi AJ, Szentandrássy N, Hegyi B, Horvath B, Magyar J, Bányász T, Nanasi PP.

Curr Pharm Des. 2015;21(8):1030-41. Review.

PMID:
25354180
26.

An emerging antiarrhythmic target: late sodium current.

Banyasz T, Szentandrássy N, Magyar J, Szabo Z, Nánási PP, Chen-Izu Y, Izu LT.

Curr Pharm Des. 2015;21(8):1073-90. Review.

PMID:
25354179
27.

Editorial (thematic issue: perspectives of antiarrhythmic therapy: new trails, challenges and pitfalls).

Nánási PP, Varró A.

Curr Pharm Des. 2015;21(8):963-4. No abstract available.

PMID:
25354176
28.

9-Anthracene carboxylic acid is more suitable than DIDS for characterization of calcium-activated chloride current during canine ventricular action potential.

Váczi K, Hegyi B, Ruzsnavszky F, Kistamás K, Horváth B, Bányász T, Nánási PP, Szentandrássy N, Magyar J.

Naunyn Schmiedebergs Arch Pharmacol. 2015 Jan;388(1):87-100. doi: 10.1007/s00210-014-1050-9. Epub 2014 Oct 26.

PMID:
25344201
29.

Contribution of ion currents to beat-to-beat variability of action potential duration in canine ventricular myocytes.

Szentandrássy N, Kistamás K, Hegyi B, Horváth B, Ruzsnavszky F, Váczi K, Magyar J, Bányász T, Varró A, Nánási PP.

Pflugers Arch. 2015 Jul;467(7):1431-1443. doi: 10.1007/s00424-014-1581-4. Epub 2014 Aug 2.

PMID:
25081243
30.

Selective Na(+) /Ca(2+) exchanger inhibition prevents Ca(2+) overload-induced triggered arrhythmias.

Nagy N, Kormos A, Kohajda Z, Szebeni Á, Szepesi J, Pollesello P, Levijoki J, Acsai K, Virág L, Nánási PP, Papp JG, Varró A, Tóth A.

Br J Pharmacol. 2014 Dec;171(24):5665-81. doi: 10.1111/bph.12867.

31.

Asynchronous activation of calcium and potassium currents by isoproterenol in canine ventricular myocytes.

Ruzsnavszky F, Hegyi B, Kistamás K, Váczi K, Horváth B, Szentandrássy N, Bányász T, Nánási PP, Magyar J.

Naunyn Schmiedebergs Arch Pharmacol. 2014 May;387(5):457-67. doi: 10.1007/s00210-014-0964-6. Epub 2014 Feb 25.

PMID:
24566722
32.

Tetrodotoxin blocks native cardiac L-type calcium channels but not CaV1.2 channels expressed in HEK cells.

Szentandrassy N, Papp F, Hegyi B, Bartok A, Krasznai Z, Nanasi PP.

J Physiol Pharmacol. 2013 Dec;64(6):807-10.

33.

Dynamics of the late Na(+) current during cardiac action potential and its contribution to afterdepolarizations.

Horvath B, Banyasz T, Jian Z, Hegyi B, Kistamas K, Nanasi PP, Izu LT, Chen-Izu Y.

J Mol Cell Cardiol. 2013 Nov;64:59-68. doi: 10.1016/j.yjmcc.2013.08.010. Epub 2013 Sep 6.

34.

Ionic mechanisms limiting cardiac repolarization reserve in humans compared to dogs.

Jost N, Virág L, Comtois P, Ordög B, Szuts V, Seprényi G, Bitay M, Kohajda Z, Koncz I, Nagy N, Szél T, Magyar J, Kovács M, Puskás LG, Lengyel C, Wettwer E, Ravens U, Nánási PP, Papp JG, Varró A, Nattel S.

J Physiol. 2013 Sep 1;591(17):4189-206. doi: 10.1113/jphysiol.2013.261198. Epub 2013 Jul 22.

35.

[Ca²⁺] i-induced augmentation of the inward rectifier potassium current (IK1) in canine and human ventricular myocardium.

Nagy N, Acsai K, Kormos A, Sebők Z, Farkas AS, Jost N, Nánási PP, Papp JG, Varró A, Tóth A.

Pflugers Arch. 2013 Nov;465(11):1621-35. doi: 10.1007/s00424-013-1309-x. Epub 2013 Jun 27.

PMID:
23807312
36.

Tetrodotoxin blockade on canine cardiac L-type Ca²⁺ channels depends on pH and redox potential.

Hegyi B, Komáromi I, Kistamás K, Ruzsnavszky F, Váczi K, Horváth B, Magyar J, Bányász T, Nánási PP, Szentandrássy N.

Mar Drugs. 2013 Jun 14;11(6):2140-53. doi: 10.3390/md11062140.

37.

Selectivity problems with drugs acting on cardiac Na⁺ and Ca²⁺ channels.

Hegyi B, Komáromi I, Nánási PP, Szentandrássy N.

Curr Med Chem. 2013;20(20):2552-71. Review.

PMID:
23597201
38.

Effects of pioglitazone on cardiac ion currents and action potential morphology in canine ventricular myocytes.

Kistamás K, Szentandrássy N, Hegyi B, Ruzsnavszky F, Váczi K, Bárándi L, Horváth B, Szebeni A, Magyar J, Bányász T, Kecskeméti V, Nánási PP.

Eur J Pharmacol. 2013 Jun 15;710(1-3):10-9. doi: 10.1016/j.ejphar.2013.03.047. Epub 2013 Apr 12.

PMID:
23588116
39.

Effects of tacrolimus on action potential configuration and transmembrane ion currents in canine ventricular cells.

Szabó L, Szentandrássy N, Kistamás K, Hegyi B, Ruzsnavszky F, Váczi K, Horváth B, Magyar J, Bányász T, Pál B, Nánási PP.

Naunyn Schmiedebergs Arch Pharmacol. 2013 Mar;386(3):239-46. doi: 10.1007/s00210-012-0823-2. Epub 2012 Dec 19.

PMID:
23250339
40.

Age-dependent changes in ion channel mRNA expression in canine cardiac tissues.

Gönczi M, Birinyi P, Balázs B, Szentandrássy N, Harmati G, Könczei Z, Csernoch L, Nánási PP.

Gen Physiol Biophys. 2012 Jun;31(2):153-62. doi: 10.4149/gpb_2012_017.

PMID:
22781818
41.

Tetrodotoxin blocks L-type Ca2+ channels in canine ventricular cardiomyocytes.

Hegyi B, Bárándi L, Komáromi I, Papp F, Horváth B, Magyar J, Bányász T, Krasznai Z, Szentandrássy N, Nánási PP.

Pflugers Arch. 2012 Aug;464(2):167-74. doi: 10.1007/s00424-012-1114-y. Epub 2012 May 22.

PMID:
22615072
42.

Role of action potential configuration and the contribution of C²⁺a and K⁺ currents to isoprenaline-induced changes in canine ventricular cells.

Szentandrássy N, Farkas V, Bárándi L, Hegyi B, Ruzsnavszky F, Horváth B, Bányász T, Magyar J, Márton I, Nánási PP.

Br J Pharmacol. 2012 Oct;167(3):599-611. doi: 10.1111/j.1476-5381.2012.02015.x.

43.

Interaction between Ca(2+) channel blockers and isoproterenol on L-type Ca(2+) current in canine ventricular cardiomyocytes.

Farkas V, Szentandrássy N, Bárándi L, Hegyi B, Ruzsnavszky F, Ruzsnavszky O, Horváth B, Bányász T, Magyar J, Márton I, Nánási PP.

Acta Physiol (Oxf). 2012 Sep;206(1):42-50. doi: 10.1111/j.1748-1716.2012.02448.x. Epub 2012 May 15.

PMID:
22520840
44.

A multiscale investigation of repolarization variability and its role in cardiac arrhythmogenesis.

Pueyo E, Corrias A, Virág L, Jost N, Szél T, Varró A, Szentandrássy N, Nánási PP, Burrage K, Rodríguez B.

Biophys J. 2011 Dec 21;101(12):2892-902. doi: 10.1016/j.bpj.2011.09.060. Epub 2011 Dec 20.

45.

Hot topics in cellular cardiac electrophysiology with potential impact on future drug design.

Nánási PP, Kecskeméti V.

Curr Med Chem. 2011;18(24):3595-6. No abstract available.

PMID:
21774766
46.

Mechanism of reverse rate-dependent action of cardioactive agents.

Bányász T, Bárándi L, Harmati G, Virág L, Szentandrássy N, Márton I, Zaza A, Varró A, Nánási PP.

Curr Med Chem. 2011;18(24):3597-606.

PMID:
21774765
47.

Enhanced repolarization capacity: new potential antiarrhythmic strategy based on HERG channel activation.

Szabó G, Farkas V, Grunnet M, Mohácsi A, Nánási PP.

Curr Med Chem. 2011;18(24):3607-21. Review.

PMID:
21774764
48.

Role of Ca²+-sensitive K+ currents in controlling ventricular repolarization: possible implications for future antiarrhytmic drug therapy.

Nagy N, Márton Z, Kiss L, Varró A, Nánási PP, Tóth A.

Curr Med Chem. 2011;18(24):3622-39. Review.

PMID:
21774763
49.

Xanthine derivatives in the heart: blessed or cursed?

Szentmiklósi AJ, Cseppentō A, Gesztelyi R, Zsuga J, Körtvély A, Harmati G, Nánási PP.

Curr Med Chem. 2011;18(24):3695-706. Review.

PMID:
21774759
50.

Cardiac calmodulin kinase: a potential target for drug design.

Bányász T, Szentandrássy N, Tóth A, Nánási PP, Magyar J, Chen-Izu Y.

Curr Med Chem. 2011;18(24):3707-13. Review.

Supplemental Content

Loading ...
Support Center