Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 19

1.

Over-expression of the photoperiod response regulator ZmCCT10 modifies plant architecture, flowering time and inflorescence morphology in maize.

Stephenson E, Estrada S, Meng X, Ourada J, Muszynski MG, Habben JE, Danilevskaya ON.

PLoS One. 2019 Feb 6;14(2):e0203728. doi: 10.1371/journal.pone.0203728. eCollection 2019.

2.

A Pectin Methylesterase ZmPme3 Is Expressed in Gametophyte factor1-s (Ga1-s) Silks and Maps to that Locus in Maize (Zea mays L.).

Moran Lauter AN, Muszynski MG, Huffman RD, Scott MP.

Front Plant Sci. 2017 Nov 7;8:1926. doi: 10.3389/fpls.2017.01926. eCollection 2017.

3.

Three FLOWERING LOCUS T-like genes function as potential florigens and mediate photoperiod response in sorghum.

Wolabu TW, Zhang F, Niu L, Kalve S, Bhatnagar-Mathur P, Muszynski MG, Tadege M.

New Phytol. 2016 May;210(3):946-59. doi: 10.1111/nph.13834. Epub 2016 Jan 14.

4.

Beyond flowering time: pleiotropic function of the maize flowering hormone florigen.

Danilevskaya ON, Meng X, McGonigle B, Muszynski MG.

Plant Signal Behav. 2011 Sep;6(9):1267-70.

5.

The FT-like ZCN8 Gene Functions as a Floral Activator and Is Involved in Photoperiod Sensitivity in Maize.

Meng X, Muszynski MG, Danilevskaya ON.

Plant Cell. 2011 Mar;23(3):942-60. doi: 10.1105/tpc.110.081406. Epub 2011 Mar 25.

6.

Involvement of the MADS-box gene ZMM4 in floral induction and inflorescence development in maize.

Danilevskaya ON, Meng X, Selinger DA, Deschamps S, Hermon P, Vansant G, Gupta R, Ananiev EV, Muszynski MG.

Plant Physiol. 2008 Aug;147(4):2054-69. doi: 10.1104/pp.107.115261. Epub 2008 Jun 6.

7.

delayed flowering1 Encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize.

Muszynski MG, Dam T, Li B, Shirbroun DM, Hou Z, Bruggemann E, Archibald R, Ananiev EV, Danilevskaya ON.

Plant Physiol. 2006 Dec;142(4):1523-36. Epub 2006 Oct 27.

8.

tie-dyed1 Regulates carbohydrate accumulation in maize leaves.

Braun DM, Ma Y, Inada N, Muszynski MG, Baker RF.

Plant Physiol. 2006 Dec;142(4):1511-22. Epub 2006 Oct 27.

9.

Duplicated fie genes in maize: expression pattern and imprinting suggest distinct functions.

Danilevskaya ON, Hermon P, Hantke S, Muszynski MG, Kollipara K, Ananiev EV.

Plant Cell. 2003 Feb;15(2):425-38.

10.

Maximum likelihood methods reveal conservation of function among closely related kinesin families.

Lawrence CJ, Malmberg RL, Muszynski MG, Dawe RK.

J Mol Evol. 2002 Jan;54(1):42-53.

PMID:
11734897
11.

Maize chromomethylase Zea methyltransferase2 is required for CpNpG methylation.

Papa CM, Springer NM, Muszynski MG, Meeley R, Kaeppler SM.

Plant Cell. 2001 Aug;13(8):1919-28.

12.

ZMPP2, a novel type-2C protein phosphatase from maize.

Broz AK, Thelen JJ, Muszynski MG, Miernyk JA, Randall DD.

J Exp Bot. 2001 Aug;52(361):1739-40.

PMID:
11479340
13.
14.

Conserved plant genes with similarity to mammalian de novo DNA methyltransferases.

Cao X, Springer NM, Muszynski MG, Phillips RL, Kaeppler S, Jacobsen SE.

Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4979-84.

15.

The dihydrolipoamide S-acetyltransferase subunit of the mitochondrial pyruvate dehydrogenase complex from maize contains a single lipoyl domain.

Thelen JJ, Muszynski MG, David NR, Luethy MH, Elthon TE, Miernyk JA, Randall DD.

J Biol Chem. 1999 Jul 30;274(31):21769-75.

16.

A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore.

Dawe RK, Reed LM, Yu HG, Muszynski MG, Hiatt EN.

Plant Cell. 1999 Jul;11(7):1227-38.

18.

Molecular analysis of two pyruvate dehydrogenase kinases from maize.

Thelen JJ, Muszynski MG, Miernyk JA, Randall DD.

J Biol Chem. 1998 Oct 9;273(41):26618-23.

19.

Genetic and molecular analysis of a three-component transposable-element system in maize.

Muszynski MG, Gierl A, Peterson PA.

Mol Gen Genet. 1993 Feb;237(1-2):105-12.

PMID:
8384288

Supplemental Content

Loading ...
Support Center