Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 43

1.

Two-dimensional simulation of optical coherence tomography images.

Brenner T, Munro PRT, Krüger B, Kienle A.

Sci Rep. 2019 Aug 21;9(1):12189. doi: 10.1038/s41598-019-48498-2.

2.

Volumetric quantitative optical coherence elastography with an iterative inversion method.

Dong L, Wijesinghe P, Sampson DD, Kennedy BF, Munro PRT, Oberai AA.

Biomed Opt Express. 2019 Jan 3;10(2):384-398. doi: 10.1364/BOE.10.000384. eCollection 2019 Feb 1.

3.

Stability of gel wax based optical scattering phantoms.

Jones CJM, Munro PRT.

Biomed Opt Express. 2018 Jul 2;9(8):3495-3502. doi: 10.1364/BOE.9.003495. eCollection 2018 Aug 1.

4.

Tool for simulating the focusing of arbitrary vector beams in free-space and stratified media.

Munro PRT.

J Biomed Opt. 2018 Sep;23(9):1-10. doi: 10.1117/1.JBO.23.9.090801.

PMID:
30251490
5.

Retrieval of weak x-ray scattering using edge illumination.

Maughan Jones CJ, Vittoria FA, Olivo A, Endrizzi M, Munro PRT.

Opt Lett. 2018 Aug 15;43(16):3874-3877. doi: 10.1364/OL.43.003874.

6.

Realistic simulation and experiment reveals the importance of scatterer microstructure in optical coherence tomography image formation.

Ossowski P, Curatolo A, Sampson DD, Munro PRT.

Biomed Opt Express. 2018 Jun 13;9(7):3122-3136. doi: 10.1364/BOE.9.003122. eCollection 2018 Jul 1.

7.

On the influence of lipid-induced optical anisotropy for the bioimaging of exo- or endocytosis with interference microscopic imaging.

Marques D, Miranda A, Silva AG, Munro PRT, DE Beule PAA.

J Microsc. 2018 May;270(2):150-155. doi: 10.1111/jmi.12668. Epub 2018 Jan 11.

PMID:
29323420
8.

Development of a reliable and reproducible phantom manufacturing method using silica microspheres in silicone.

Maughan Jones C, Munro PR.

J Biomed Opt. 2017 Sep;22(9):1-5. doi: 10.1117/1.JBO.22.9.095004.

9.

Classification of biological micro-objects using optical coherence tomography: in silico study.

Ossowski P, Wojtkowski M, Munro PR.

Biomed Opt Express. 2017 Jul 10;8(8):3606-3626. doi: 10.1364/BOE.8.003606. eCollection 2017 Aug 1.

10.

Three-dimensional full wave model of image formation in optical coherence tomography.

Munro PR.

Opt Express. 2016 Nov 14;24(23):27016-27031. doi: 10.1364/OE.24.027016.

PMID:
27857429
11.

Quantifying the influence of Bessel beams on image quality in optical coherence tomography.

Curatolo A, Munro PRT, Lorenser D, Sreekumar P, Singe CC, Kennedy BF, Sampson DD.

Sci Rep. 2016 Mar 24;6:23483. doi: 10.1038/srep23483.

12.

Exploiting data redundancy in computational optical imaging.

Munro PR.

Opt Express. 2015 Nov 30;23(24):30603-17. doi: 10.1364/OE.23.030603.

PMID:
26698693
13.

Full wave model of image formation in optical coherence tomography applicable to general samples.

Munro PR, Curatolo A, Sampson DD.

Opt Express. 2015 Feb 9;23(3):2541-56. doi: 10.1364/OE.23.002541.

PMID:
25836119
14.

Polarization-multiplexed encoding at nanometer scales.

Macias-Romero C, Munro PR, Török P.

Opt Express. 2014 Oct 20;22(21):26240-5. doi: 10.1364/OE.22.026240.

PMID:
25401656
15.

Analysis of image formation in optical coherence elastography using a multiphysics approach.

Chin L, Curatolo A, Kennedy BF, Doyle BJ, Munro PR, McLaughlin RA, Sampson DD.

Biomed Opt Express. 2014 Aug 1;5(9):2913-30. doi: 10.1364/BOE.5.002913. eCollection 2014 Sep 1.

16.

Low-dose phase contrast tomography with conventional x-ray sources.

Hagen CK, Munro PR, Endrizzi M, Diemoz PC, Olivo A.

Med Phys. 2014 Jul;41(7):070701. doi: 10.1118/1.4884297.

17.

Confocal polarization imaging in high-numerical-aperture space.

Macias-Romero C, Foreman MR, Munro PR, Török P.

Opt Lett. 2014 Apr 15;39(8):2322-5. doi: 10.1364/OL.39.002322.

PMID:
24978983
18.

A compact source condition for modelling focused fields using the pseudospectral time-domain method.

Munro PR, Engelke D, Sampson DD.

Opt Express. 2014 Mar 10;22(5):5599-613. doi: 10.1364/OE.22.005599.

PMID:
24663901
19.

Medicine, material science and security: the versatility of the coded-aperture approach.

Munro PR, Endrizzi M, Diemoz PC, Hagen CK, Szafraniec MB, Millard TP, Zapata CE, Speller RD, Olivo A.

Philos Trans A Math Phys Eng Sci. 2014 Jan 27;372(2010):20130029. doi: 10.1098/rsta.2013.0029. Print 2014 Mar 6.

20.

Estimates of leaf vein density are scale dependent.

Price CA, Munro PR, Weitz JS.

Plant Physiol. 2014 Jan;164(1):173-80. doi: 10.1104/pp.113.224451. Epub 2013 Nov 20.

21.

Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking.

Gong P, McLaughlin RA, Liew YM, Munro PR, Wood FM, Sampson DD.

J Biomed Opt. 2014 Feb;19(2):21111. doi: 10.1117/1.JBO.19.2.021111.

22.

Strategies for efficient and fast wave optics simulation of coded-aperture and other x-ray phase-contrast imaging methods.

Vittoria FA, Diemoz PC, Endrizzi M, Rigon L, Lopez FC, Dreossi D, Munro PR, Olivo A.

Appl Opt. 2013 Oct 1;52(28):6940-7. doi: 10.1364/AO.52.006940.

PMID:
24085208
23.

Low-dose phase contrast mammography with conventional x-ray sources.

Olivo A, Gkoumas S, Endrizzi M, Hagen CK, Szafraniec MB, Diemoz PC, Munro PR, Ignatyev K, Johnson B, Horrocks JA, Vinnicombe SJ, Jones JL, Speller RD.

Med Phys. 2013 Sep;40(9):090701. doi: 10.1118/1.4817480.

PMID:
24007133
24.

Method for automatization of the alignment of a laboratory based x-ray phase contrast edge illumination system.

Millard TP, Endrizzi M, Ignatyev K, Hagen CK, Munro PR, Speller RD, Olivo A.

Rev Sci Instrum. 2013 Aug;84(8):083702. doi: 10.1063/1.4816827.

PMID:
24007068
25.

A simplified approach to quantitative coded aperture X-ray phase imaging.

Munro PR, Hagen CK, Szafraniec MB, Olivo A.

Opt Express. 2013 May 6;21(9):11187-201. doi: 10.1364/OE.21.011187.

PMID:
23669976
26.

A quantitative, non-interferometric X-ray phase contrast imaging technique.

Munro PR, Rigon L, Ignatyev K, Lopez FC, Dreossi D, Speller RD, Olivo A.

Opt Express. 2013 Jan 14;21(1):647-61. doi: 10.1364/OE.21.000647.

27.

Phase and absorption retrieval using incoherent X-ray sources.

Munro PR, Ignatyev K, Speller RD, Olivo A.

Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):13922-7. doi: 10.1073/pnas.1205396109. Epub 2012 Aug 13.

28.

Strain estimation in phase-sensitive optical coherence elastography.

Kennedy BF, Koh SH, McLaughlin RA, Kennedy KM, Munro PR, Sampson DD.

Biomed Opt Express. 2012 Aug 1;3(8):1865-79. doi: 10.1364/BOE.3.001865. Epub 2012 Jul 17.

29.

A New Generation of X-ray Baggage Scanners Based on a Different Physical Principle.

Ignatyev K, Munro PRT, Chana D, Speller RD, Olivo A.

Materials (Basel). 2011 Oct 17;4(10):1846-1860. doi: 10.3390/ma4101846.

30.

Effects of signal diffusion on x-ray phase contrast images.

Ignatyev K, Munro PR, Speller RD, Olivo A.

Rev Sci Instrum. 2011 Jul;82(7):073702. doi: 10.1063/1.3606442.

PMID:
21806184
31.

Noninterferometric phase-contrast images obtained with incoherent x-ray sources.

Olivo A, Ignatyev K, Munro PR, Speller RD.

Appl Opt. 2011 Apr 20;50(12):1765-9. doi: 10.1364/AO.50.001765.

PMID:
21509069
32.

Source size and temporal coherence requirements of coded aperture type x-ray phase contrast imaging systems.

Munro PR, Ignatyev K, Speller RD, Olivo A.

Opt Express. 2010 Sep 13;18(19):19681-92. doi: 10.1364/OE.18.019681.

33.

Limitations imposed by specimen phase gradients on the design of grating based x-ray phase contrast imaging systems.

Munro PR, Ignatyev K, Speller RD, Olivo A.

Appl Opt. 2010 Jul 10;49(20):3860-3. doi: 10.1364/AO.49.003860.

34.

Design of a novel phase contrast x-ray imaging system for mammography.

Munro PR, Ignatyev K, Speller RD, Olivo A.

Phys Med Biol. 2010 Jul 21;55(14):4169-85. doi: 10.1088/0031-9155/55/14/014. Epub 2010 Jul 5.

35.

The relationship between wave and geometrical optics models of coded aperture type x-ray phase contrast imaging systems.

Munro PR, Ignatyev K, Speller RD, Olivo A.

Opt Express. 2010 Mar 1;18(5):4103-17. doi: 10.1364/OE.18.004103.

36.

Properties of high-numerical-aperture Mueller-matrix polarimeters.

Munro PR, Török P.

Opt Lett. 2008 Nov 1;33(21):2428-30.

PMID:
18978876
37.

Inversion of the Debye-Wolf diffraction integral using an eigenfunction representation of the electric fields in the focal region.

Foreman MR, Sherif SS, Munro PR, Török P.

Opt Express. 2008 Mar 31;16(7):4901-17.

PMID:
18542590
38.

High numerical aperture vectorial imaging in coherent optical microscopes.

Török P, Munro PR, Kriezis EE.

Opt Express. 2008 Jan 21;16(2):507-23.

PMID:
18542126
39.

Calculation of the image of an arbitrary vectorial electromagnetic field.

Munro PR, Török P.

Opt Express. 2007 Jul 23;15(15):9293-307.

PMID:
19547272
40.

Rigorous near- to far-field transformation for vectorial diffraction calculations and its numerical implementation.

Török P, Munro PR, Kriezis EE.

J Opt Soc Am A Opt Image Sci Vis. 2006 Mar;23(3):713-22.

PMID:
16539070
41.

Vectorial, high-numerical-aperture study of phase-contrast microscopes.

Munro PR, Török P.

J Opt Soc Am A Opt Image Sci Vis. 2004 Sep;21(9):1714-23.

PMID:
15384438
42.

Effect of detector size on optical resolution in phase contrast microscopes.

Munro PR, Török P.

Opt Lett. 2004 Mar 15;29(6):623-5.

PMID:
15035491
43.

Effectiveness of open-circuit and oxyhood delivery of helium-oxygen.

Stillwell PC, Quick JD, Munro PR, Mallory GB Jr.

Chest. 1989 Jun;95(6):1222-4.

PMID:
2721256

Supplemental Content

Loading ...
Support Center