Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 53

1.

Development of the Tonsil Microbiome in Pigs and Effects of Stress on the Microbiome.

Pena Cortes LC, LeVeque RM, Funk JA, Marsh TL, Mulks MH.

Front Vet Sci. 2018 Sep 19;5:220. doi: 10.3389/fvets.2018.00220. eCollection 2018.

2.

Triclosan Is an Aminoglycoside Adjuvant for Eradication of Pseudomonas aeruginosa Biofilms.

Maiden MM, Hunt AMA, Zachos MP, Gibson JA, Hurwitz ME, Mulks MH, Waters CM.

Antimicrob Agents Chemother. 2018 May 25;62(6). pii: e00146-18. doi: 10.1128/AAC.00146-18. Print 2018 Jun.

3.

Development of the tonsillar microbiome in pigs from newborn through weaning.

Pena Cortes LC, LeVeque RM, Funk J, Marsh TL, Mulks MH.

BMC Microbiol. 2018 Apr 16;18(1):35. doi: 10.1186/s12866-018-1176-x.

4.

Staphylococcus aureus Utilizes Host-Derived Lipoprotein Particles as Sources of Fatty Acids.

Delekta PC, Shook JC, Lydic TA, Mulks MH, Hammer ND.

J Bacteriol. 2018 May 9;200(11). pii: e00728-17. doi: 10.1128/JB.00728-17. Print 2018 Jun 1.

5.

Hypersensitivity pneumonitis and antigen identification--An alternate approach.

Millerick-May ML, Mulks MH, Gerlach J, Flaherty KR, Schmidt SL, Martinez FJ, LeVeque RM, Rosenman KD.

Respir Med. 2016 Mar;112:97-105. doi: 10.1016/j.rmed.2015.09.001. Epub 2015 Sep 8.

6.

The RNA chaperone Hfq promotes fitness of Actinobacillus pleuropneumoniae during porcine pleuropneumonia.

Subashchandrabose S, Leveque RM, Kirkwood RN, Kiupel M, Mulks MH.

Infect Immun. 2013 Aug;81(8):2952-61. doi: 10.1128/IAI.00392-13. Epub 2013 Jun 3.

7.

Defining the "core microbiome" of the microbial communities in the tonsils of healthy pigs.

Lowe BA, Marsh TL, Isaacs-Cosgrove N, Kirkwood RN, Kiupel M, Mulks MH.

BMC Microbiol. 2012 Feb 7;12:20. doi: 10.1186/1471-2180-12-20.

8.

Microbial communities in the tonsils of healthy pigs.

Lowe BA, Marsh TL, Isaacs-Cosgrove N, Kirkwood RN, Kiupel M, Mulks MH.

Vet Microbiol. 2011 Jan 27;147(3-4):346-57. doi: 10.1016/j.vetmic.2010.06.025. Epub 2010 Jul 1.

PMID:
20663617
9.

The type 2 secretion Pseudopilin, gspJ, is required for multihost pathogenicity of Burkholderia cenocepacia AU1054.

Somvanshi VS, Viswanathan P, Jacobs JL, Mulks MH, Sundin GW, Ciche TA.

Infect Immun. 2010 Oct;78(10):4110-21. doi: 10.1128/IAI.00558-10. Epub 2010 Jul 26.

10.

Branched-chain amino acids are required for the survival and virulence of Actinobacillus pleuropneumoniae in swine.

Subashchandrabose S, LeVeque RM, Wagner TK, Kirkwood RN, Kiupel M, Mulks MH.

Infect Immun. 2009 Nov;77(11):4925-33. doi: 10.1128/IAI.00671-09. Epub 2009 Aug 24.

11.

Ohr, an in vivo-induced gene in Actinobacillus pleuropneumoniae, is located on a genomic island and requires glutathione-S-transferase for activity.

Wolfram TJ, Leveque RM, Kastenmayer RJ, Mulks MH.

FEMS Immunol Med Microbiol. 2009 Oct;57(1):59-68. doi: 10.1111/j.1574-695X.2009.00579.x. Epub 2009 Jun 30.

12.

Genetic diversity and multihost pathogenicity of clinical and environmental strains of Burkholderia cenocepacia.

Springman AC, Jacobs JL, Somvanshi VS, Sundin GW, Mulks MH, Whittam TS, Viswanathan P, Gray RL, Lipuma JJ, Ciche TA.

Appl Environ Microbiol. 2009 Aug;75(16):5250-60. doi: 10.1128/AEM.00877-09. Epub 2009 Jun 19.

13.

Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae.

Izano EA, Sadovskaya I, Vinogradov E, Mulks MH, Velliyagounder K, Ragunath C, Kher WB, Ramasubbu N, Jabbouri S, Perry MB, Kaplan JB.

Microb Pathog. 2007 Jul;43(1):1-9. Epub 2007 Mar 4.

15.
16.

Biofilm formation is prevalent among field isolates of Actinobacillus pleuropneumoniae.

Kaplan JB, Mulks MH.

Vet Microbiol. 2005 Jun 15;108(1-2):89-94. Epub 2005 Apr 2.

PMID:
15917136
18.
20.
21.
22.

A genetically-defined riboflavin auxotroph of Actinobacillus pleuropneumoniae as a live attenuated vaccine.

Fuller TE, Thacker BJ, Duran CO, Mulks MH.

Vaccine. 2000 Jun 15;18(25):2867-77.

PMID:
10812230
23.

Identification of in vivo induced genes in Actinobacillus pleuropneumoniae.

Fuller TE, Shea RJ, Thacker BJ, Mulks MH.

Microb Pathog. 1999 Nov;27(5):311-27.

PMID:
10545257
25.

A riboflavin auxotroph of Actinobacillus pleuropneumoniae is attenuated in swine.

Fuller TE, Thacker BJ, Mulks MH.

Infect Immun. 1996 Nov;64(11):4659-64.

26.
27.
28.

A targeted mutagenesis system for Actinobacillus pleuropneumoniae.

Mulks MH, Buysse JM.

Gene. 1995 Nov 7;165(1):61-6.

PMID:
7489917
29.

Cross-protection experiments in pigs vaccinated with Actinobacillus pleuropneumoniae subtypes 1A and 1B.

Jolie RA, Mulks MH, Thacker BJ.

Vet Microbiol. 1995 Aug;45(4):383-91.

PMID:
7483251
30.

Antigenic differences within Actinobacillus pleuropneumoniae serotype 1.

Jolie RA, Mulks MH, Thacker BJ.

Vet Microbiol. 1994 Feb;38(4):329-49.

PMID:
8160348
31.

Bacterial immunoglobulin A1 proteases.

Mulks MH, Shoberg RJ.

Methods Enzymol. 1994;235:543-54. Review. No abstract available.

PMID:
8057925
34.
35.

Sequence of the argF gene encoding ornithine transcarbamoylase from Neisseria gonorrhoeae.

Martin PR, Cooperider JW, Mulks MH.

Gene. 1990 Sep 28;94(1):139-40.

PMID:
2121620
36.

In vitro antibacterial activity of faeriefungin, a new broad-spectrum polyene macrolide antibiotic.

Mulks MH, Nair MG, Putnam AR.

Antimicrob Agents Chemother. 1990 Sep;34(9):1762-5.

37.

Faeriefungin: a new broad-spectrum antibiotic from Streptomyces griseus var. autotrophicus.

Nair MG, Putnam AR, Mishra SK, Mulks MH, Taft WH, Keller JE, Miller JR, Zhu PP, Meinhart JD, Lynn DG.

J Nat Prod. 1989 Jul-Aug;52(4):797-809.

PMID:
2509636
38.

Potential virulence factors of Haemophilus influenzae biogroup aegyptius in Brazilian purpuric fever. The Brazilian Purpuric Fever Study Group.

Carlone GM, Gorelkin L, Gheesling LL, Hoiseth SK, Mulks MH, O'Connor SP, Weyant RS, Myrick JE, Mayer LW, Arko RJ.

Pediatr Infect Dis J. 1989 Apr;8(4):245-7. No abstract available.

PMID:
2785676
39.

Potential virulence-associated factors in Brazilian purpuric fever. Brazilian Purpuric Fever Study Group.

Carlone GM, Gorelkin L, Gheesling LL, Erwin AL, Hoiseth SK, Mulks MH, O'Connor SP, Weyant RS, Myrick J, Rubin L, et al.

J Clin Microbiol. 1989 Apr;27(4):609-14. Review. No abstract available.

40.
42.

Restriction site polymorphism in genes encoding type 2 but not type 1 gonococcal IgA1 proteases.

Mulks MH, Simpson DA, Shoberg RJ.

Antonie Van Leeuwenhoek. 1987;53(6):471-8.

PMID:
2897189
43.

Pathogenesis of IgA1 protease-producing and -nonproducing Haemophilus influenzae in human nasopharyngeal organ cultures.

Farley MM, Stephens DS, Mulks MH, Cooper MD, Bricker JV, Mirra SS, Wright A.

J Infect Dis. 1986 Nov;154(5):752-9.

PMID:
3534106
44.
45.

Examination of Haemophilus pleuropneumoniae for immunoglobulin A protease activity.

Mulks MH, Moxon ER, Bricker J, Wright A, Plaut AG.

Infect Immun. 1984 Jul;45(1):276-7.

46.
47.

IgA1 proteases of Haemophilus influenzae: cloning and characterization in Escherichia coli K-12.

Bricker J, Mulks MH, Plaut AG, Moxon ER, Wright A.

Proc Natl Acad Sci U S A. 1983 May;80(9):2681-5.

48.

Relationship between the specificity of IgA proteases and serotypes in Haemophilus influenzae.

Mulks MH, Kornfeld SJ, Frangione B, Plaut AG.

J Infect Dis. 1982 Aug;146(2):266-74.

PMID:
6809843
49.

IgA proteases of two distinct specificities are released by Neisseria meningitidis.

Mulks MH, Plaut AG, Feldman HA, Frangione B.

J Exp Med. 1980 Nov 1;152(5):1442-7.

50.

Supplemental Content

Loading ...
Support Center