Sort by
Items per page

Send to

Choose Destination

Search results

Items: 25


Malaria mosquitoes use leg push-off forces to control body pitch during take-off.

van Veen WG, van Leeuwen JL, Muijres FT.

J Exp Zool A Ecol Integr Physiol. 2020 Jan;333(1):38-49. doi: 10.1002/jez.2308. Epub 2019 Aug 12.


Reorientation and propulsion in fast-starting zebrafish larvae: an inverse dynamics analysis.

Voesenek CJ, Pieters RPM, Muijres FT, van Leeuwen JL.

J Exp Biol. 2019 Jul 17;222(Pt 14). pii: jeb203091. doi: 10.1242/jeb.203091.


A chordwise offset of the wing-pitch axis enhances rotational aerodynamic forces on insect wings: a numerical study.

van Veen WG, van Leeuwen JL, Muijres FT.

J R Soc Interface. 2019 Jun 28;16(155):20190118. doi: 10.1098/rsif.2019.0118. Epub 2019 Jun 19.


A songbird compensates for wing molt during escape flights by reducing the molt gap and increasing angle of attack.

Tomotani BM, Muijres FT.

J Exp Biol. 2019 May 28;222(Pt 10). pii: jeb195396. doi: 10.1242/jeb.195396.


Flight behaviour of malaria mosquitoes around odour-baited traps: capture and escape dynamics.

Cribellier A, van Erp JA, Hiscox A, Lankheet MJ, van Leeuwen JL, Spitzen J, Muijres FT.

R Soc Open Sci. 2018 Aug 8;5(8):180246. doi: 10.1098/rsos.180246. eCollection 2018 Aug.


A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns.

Karásek M, Muijres FT, De Wagter C, Remes BDW, de Croon GCHE.

Science. 2018 Sep 14;361(6407):1089-1094. doi: 10.1126/science.aat0350.


Biomechanics of swimming in developing larval fish.

Voesenek CJ, Muijres FT, van Leeuwen JL.

J Exp Biol. 2018 Jan 11;221(Pt 1). pii: jeb149583. doi: 10.1242/jeb.149583. Review.


Identification of optimal feedback control rules from micro-quadrotor and insect flight trajectories.

Faruque IA, Muijres FT, Macfarlane KM, Kehlenbeck A, Humbert JS.

Biol Cybern. 2018 Jun;112(3):165-179. doi: 10.1007/s00422-017-0742-x. Epub 2018 Jan 3.


Escaping blood-fed malaria mosquitoes minimize tactile detection without compromising on take-off speed.

Muijres FT, Chang SW, van Veen WG, Spitzen J, Biemans BT, Koehl MAR, Dudley R.

J Exp Biol. 2017 Oct 15;220(Pt 20):3751-3762. doi: 10.1242/jeb.163402.


Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics.

Muijres FT, Iwasaki NA, Elzinga MJ, Melis JM, Dickinson MH.

Interface Focus. 2017 Feb 6;7(1):20160103. doi: 10.1098/rsfs.2016.0103.


The aerodynamics and control of free flight manoeuvres in Drosophila.

Dickinson MH, Muijres FT.

Philos Trans R Soc Lond B Biol Sci. 2016 Sep 26;371(1704). pii: 20150388. doi: 10.1098/rstb.2015.0388. Review.


Body saccades of Drosophila consist of stereotyped banked turns.

Muijres FT, Elzinga MJ, Iwasaki NA, Dickinson MH.

J Exp Biol. 2015 Mar;218(Pt 6):864-75. doi: 10.1242/jeb.114280. Epub 2015 Feb 5.


Leading edge vortices in lesser long-nosed bats occurring at slow but not fast flight speeds.

Muijres FT, Christoffer Johansson L, Winter Y, Hedenström A.

Bioinspir Biomim. 2014 Jun;9(2):025006. doi: 10.1088/1748-3182/9/2/025006. Epub 2014 May 22.


Flies evade looming targets by executing rapid visually directed banked turns.

Muijres FT, Elzinga MJ, Melis JM, Dickinson MH.

Science. 2014 Apr 11;344(6180):172-7. doi: 10.1126/science.1248955.


Bird flight: Fly with a little flap from your friends.

Muijres FT, Dickinson MH.

Nature. 2014 Jan 16;505(7483):295-6. doi: 10.1038/505295a. No abstract available.


Aerodynamic flight performance in flap-gliding birds and bats.

Muijres FT, Henningsson P, Stuiver M, Hedenström A.

J Theor Biol. 2012 Aug 7;306:120-8. doi: 10.1016/j.jtbi.2012.04.014. Epub 2012 May 1.


Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.

Muijres FT, Johansson LC, Bowlin MS, Winter Y, Hedenström A.

PLoS One. 2012;7(5):e37335. doi: 10.1371/journal.pone.0037335. Epub 2012 May 18.


Elytra boost lift, but reduce aerodynamic efficiency in flying beetles.

Johansson LC, Engel S, Baird E, Dacke M, Muijres FT, Hedenström A.

J R Soc Interface. 2012 Oct 7;9(75):2745-8. doi: 10.1098/rsif.2012.0053. Epub 2012 May 16.


Leading edge vortex in a slow-flying passerine.

Muijres FT, Johansson LC, Hedenström A.

Biol Lett. 2012 Aug 23;8(4):554-7. doi: 10.1098/rsbl.2012.0130. Epub 2012 Mar 14.


Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers.

Muijres FT, Bowlin MS, Johansson LC, Hedenström A.

J R Soc Interface. 2012 Feb 7;9(67):292-303. doi: 10.1098/rsif.2011.0238. Epub 2011 Jun 15.


Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization.

Muijres FT, Johansson LC, Winter Y, Hedenström A.

J R Soc Interface. 2011 Oct 7;8(63):1418-28. doi: 10.1098/rsif.2011.0015. Epub 2011 Mar 2.


Time-resolved vortex wake of a common swift flying over a range of flight speeds.

Henningsson P, Muijres FT, Hedenström A.

J R Soc Interface. 2011 Jun 6;8(59):807-16. doi: 10.1098/rsif.2010.0533. Epub 2010 Dec 3.


Vortex interactions with flapping wings and fins can be unpredictable.

Lentink D, Van Heijst GF, Muijres FT, Van Leeuwen JL.

Biol Lett. 2010 Jun 23;6(3):394-7. doi: 10.1098/rsbl.2009.0806. Epub 2010 Feb 3.


Leading-edge vortex improves lift in slow-flying bats.

Muijres FT, Johansson LC, Barfield R, Wolf M, Spedding GR, Hedenström A.

Science. 2008 Feb 29;319(5867):1250-3. doi: 10.1126/science.1153019.


Vortex-wake interactions of a flapping foil that models animal swimming and flight.

Lentink D, Muijres FT, Donker-Duyvis FJ, van Leeuwen JL.

J Exp Biol. 2008 Jan;211(Pt 2):267-73. doi: 10.1242/jeb.006155.

Supplemental Content

Loading ...
Support Center