Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 43

1.

Indigenous microbial communities along the NW Portuguese Coast: Potential for hydrocarbons degradation and relation with sediment contamination.

Gouveia V, Almeida CMR, Almeida T, Teixeira C, Mucha AP.

Mar Pollut Bull. 2018 Jun;131(Pt A):620-632. doi: 10.1016/j.marpolbul.2018.04.063. Epub 2018 May 4.

PMID:
29886989
2.

Potential of dissimilatory nitrate reduction pathways in polycyclic aromatic hydrocarbon degradation.

Ribeiro H, de Sousa T, Santos JP, Sousa AGG, Teixeira C, Monteiro MR, Salgado P, Mucha AP, Almeida CMR, Torgo L, Magalhães C.

Chemosphere. 2018 May;199:54-67. doi: 10.1016/j.chemosphere.2018.01.171. Epub 2018 Feb 1.

PMID:
29428516
3.

Bacterial community dynamic associated with autochthonous bioaugmentation for enhanced Cu phytoremediation of salt-marsh sediments.

Almeida CMR, Oliveira T, Reis I, Gomes CR, Mucha AP.

Mar Environ Res. 2017 Dec;132:68-78. doi: 10.1016/j.marenvres.2017.10.007. Epub 2017 Oct 16.

PMID:
29122290
4.

Silver nanoparticles uptake by salt marsh plants - Implications for phytoremediation processes and effects in microbial community dynamics.

Fernandes JP, Mucha AP, Francisco T, Gomes CR, Almeida CMR.

Mar Pollut Bull. 2017 Jun 15;119(1):176-183. doi: 10.1016/j.marpolbul.2017.03.052. Epub 2017 Mar 28.

PMID:
28363429
5.

Biodegradation of the veterinary antibiotics enrofloxacin and ceftiofur and associated microbial community dynamics.

Alexandrino DAM, Mucha AP, Almeida CMR, Gao W, Jia Z, Carvalho MF.

Sci Total Environ. 2017 Mar 1;581-582:359-368. doi: 10.1016/j.scitotenv.2016.12.141. Epub 2017 Jan 6.

PMID:
28069302
6.

Response of microbial communities colonizing salt marsh plants rhizosphere to copper oxide nanoparticles contamination and its implications for phytoremediation processes.

Fernandes JP, Almeida CMR, Andreotti F, Barros L, Almeida T, Mucha AP.

Sci Total Environ. 2017 Mar 1;581-582:801-810. doi: 10.1016/j.scitotenv.2017.01.015. Epub 2017 Jan 7.

PMID:
28069300
7.

Constructed wetlands for the removal of metals from livestock wastewater - Can the presence of veterinary antibiotics affect removals?

Almeida CM, Santos F, Ferreira AC, Gomes CR, Basto MC, Mucha AP.

Ecotoxicol Environ Saf. 2017 Mar;137:143-148. doi: 10.1016/j.ecoenv.2016.11.021. Epub 2016 Dec 19.

PMID:
27918945
8.

Differential effects of crude oil on denitrification and anammox, and the impact on N2O production.

Ribeiro H, Mucha AP, Azevedo I, Salgado P, Teixeira C, Almeida CMR, Joye SB, Magalhães C.

Environ Pollut. 2016 Sep;216:391-399. doi: 10.1016/j.envpol.2016.05.045. Epub 2016 Jul 7.

PMID:
27395442
9.

Effect of petroleum hydrocarbons in copper phytoremediation by a salt marsh plant (Juncus maritimus) and the role of autochthonous bioaugmentation.

Montenegro IP, Mucha AP, Reis I, Rodrigues P, Almeida CM.

Environ Sci Pollut Res Int. 2016 Oct;23(19):19471-80. doi: 10.1007/s11356-016-7154-7. Epub 2016 Jul 6.

PMID:
27381357
10.

Disentangling the effects of solar radiation, wrack macroalgae and beach macrofauna on associated bacterial assemblages.

Rodil IF, Fernandes JP, Mucha AP.

Mar Environ Res. 2015 Dec;112(Pt A):104-12. doi: 10.1016/j.marenvres.2015.10.002. Epub 2015 Oct 21.

PMID:
26498844
11.

Interactions between salt marsh plants and Cu nanoparticles - Effects on metal uptake and phytoremediation processes.

Andreotti F, Mucha AP, Caetano C, Rodrigues P, Rocha Gomes C, Almeida CM.

Ecotoxicol Environ Saf. 2015 Oct;120:303-9. doi: 10.1016/j.ecoenv.2015.06.017. Epub 2015 Jun 19.

PMID:
26094036
12.

Response of a salt marsh microbial community to antibiotic contamination.

Fernandes JP, Almeida CM, Basto MC, Mucha AP.

Sci Total Environ. 2015 Nov 1;532:301-8. doi: 10.1016/j.scitotenv.2015.06.029. Epub 2015 Jun 14.

PMID:
26081732
13.

Microbial community dynamics associated with veterinary antibiotics removal in constructed wetlands microcosms.

Fernandes JP, Almeida CMR, Pereira AC, Ribeiro IL, Reis I, Carvalho P, Basto MCP, Mucha AP.

Bioresour Technol. 2015 Apr;182:26-33. doi: 10.1016/j.biortech.2015.01.096. Epub 2015 Jan 31.

PMID:
25679496
14.

Copper phytoremediation by a salt marsh plant (Phragmites australis) enhanced by autochthonous bioaugmentation.

Oliveira T, Mucha AP, Reis I, Rodrigues P, Gomes CR, Almeida CM.

Mar Pollut Bull. 2014 Nov 15;88(1-2):231-8. doi: 10.1016/j.marpolbul.2014.08.038. Epub 2014 Sep 18.

PMID:
25240741
15.

Salt marsh sediment characteristics as key regulators on the efficiency of hydrocarbons bioremediation by Juncus maritimus rhizospheric bacterial community.

Ribeiro H, Almeida CM, Magalhães C, Bordalo AA, Mucha AP.

Environ Sci Pollut Res Int. 2015 Jan;22(1):450-62. doi: 10.1007/s11356-014-3388-4. Epub 2014 Aug 2.

PMID:
25081009
16.

The effect of sand composition on the degradation of buried oil.

Fernández-Fernández S, Bernabeu AM, Rey D, Mucha AP, Almeida CMR, Bouchette F.

Mar Pollut Bull. 2014 Sep 15;86(1-2):391-401. doi: 10.1016/j.marpolbul.2014.06.040. Epub 2014 Jul 17.

PMID:
25044040
17.

Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium.

Teixeira C, Almeida CM, Nunes da Silva M, Bordalo AA, Mucha AP.

Sci Total Environ. 2014 Sep 15;493:757-65. doi: 10.1016/j.scitotenv.2014.06.040. Epub 2014 Jul 3.

PMID:
25000571
18.

Salt marsh plants as key mediators on the level of cadmium impact on microbial denitrification.

Almeida CM, Mucha AP, da Silva MN, Monteiro M, Salgado P, Necrasov T, Magalhães C.

Environ Sci Pollut Res Int. 2014 Sep;21(17):10270-8. doi: 10.1007/s11356-014-2953-1. Epub 2014 May 3.

PMID:
24792983
19.

Potential of phytoremediation for the removal of petroleum hydrocarbons in contaminated salt marsh sediments.

Ribeiro H, Mucha AP, Almeida CM, Bordalo AA.

J Environ Manage. 2014 May 1;137:10-5. doi: 10.1016/j.jenvman.2014.01.047. Epub 2014 Feb 28.

PMID:
24584003
20.

A strategy to potentiate Cd phytoremediation by saltmarsh plants - autochthonous bioaugmentation.

Nunes da Silva M, Mucha AP, Rocha AC, Teixeira C, Gomes CR, Almeida CM.

J Environ Manage. 2014 Feb 15;134:136-44. doi: 10.1016/j.jenvman.2014.01.004. Epub 2014 Jan 29.

PMID:
24486467
21.

Bioremediation potential of microorganisms from a sandy beach affected by a major oil spill.

Reis I, Almeida CM, Magalhães CM, Cochofel J, Guedes P, Basto MC, Bordalo AA, Mucha AP.

Environ Sci Pollut Res Int. 2014 Mar;21(5):3634-45. doi: 10.1007/s11356-013-2365-7. Epub 2013 Nov 24.

PMID:
24271736
22.

Lead and other heavy metals in dust fall from single-family housing demolition.

Jacobs DE, Cali S, Welch A, Catalin B, Dixon SL, Evens A, Mucha AP, Vahl N, Erdal S, Bartlett J.

Public Health Rep. 2013 Nov-Dec;128(6):454-62.

23.

Potential of bioremediation for buried oil removal in beaches after an oil spill.

Pontes J, Mucha AP, Santos H, Reis I, Bordalo A, Basto MC, Bernabeu A, Almeida CM.

Mar Pollut Bull. 2013 Nov 15;76(1-2):258-65. doi: 10.1016/j.marpolbul.2013.08.029. Epub 2013 Sep 17.

PMID:
24054785
24.

Influence of different salt marsh plants on hydrocarbon degrading microorganisms abundance throughout a phenological cycle.

Ribeiro H, Almeida CM, Mucha AP, Bordalo AA.

Int J Phytoremediation. 2013;15(8):715-28.

PMID:
23819270
25.

Bacterial community response to petroleum contamination and nutrient addition in sediments from a temperate salt marsh.

Ribeiro H, Mucha AP, Almeida CM, Bordalo AA.

Sci Total Environ. 2013 Aug 1;458-460:568-76. doi: 10.1016/j.scitotenv.2013.04.015. Epub 2013 May 22.

PMID:
23707865
26.

Potential of constructed wetlands microcosms for the removal of veterinary pharmaceuticals from livestock wastewater.

Carvalho PN, Araújo JL, Mucha AP, Basto MC, Almeida CM.

Bioresour Technol. 2013 Apr;134:412-6. doi: 10.1016/j.biortech.2013.02.027. Epub 2013 Feb 20.

PMID:
23489569
27.

Potential of the microbial community present in an unimpacted beach sediment to remediate petroleum hydrocarbons.

Almeida CM, Reis I, Couto MN, Bordalo AA, Mucha AP.

Environ Sci Pollut Res Int. 2013 May;20(5):3176-84. doi: 10.1007/s11356-012-1240-2. Epub 2012 Oct 10.

PMID:
23054799
28.

Biodegradation of petroleum hydrocarbons in estuarine sediments: metal influence.

Almeida R, Mucha AP, Teixeira C, Bordalo AA, Almeida CM.

Biodegradation. 2013 Feb;24(1):111-23. doi: 10.1007/s10532-012-9562-9. Epub 2012 Jun 13.

PMID:
22692293
29.

Hydrocarbon degradation potential of salt marsh plant-microorganisms associations.

Ribeiro H, Mucha AP, Almeida CM, Bordalo AA.

Biodegradation. 2011 Jul;22(4):729-39. doi: 10.1007/s10532-010-9446-9. Epub 2010 Dec 25.

PMID:
21188477
30.

Lessons learned from Chicago's emergency response to mass evacuations caused by Hurricane Katrina.

Broz D, Levin EC, Mucha AP, Pelzel D, Wong W, Persky VW, Hershow RC.

Am J Public Health. 2009 Aug;99(8):1496-504. doi: 10.2105/AJPH.2007.126680. Epub 2009 Feb 5.

31.

Influence of surfactants on the Cu phytoremediation potential of a salt marsh plant.

Almeida CM, Dias AC, Mucha AP, Bordalo AA, Vasconcelos MT.

Chemosphere. 2009 Apr;75(2):135-40. doi: 10.1016/j.chemosphere.2008.12.037. Epub 2009 Jan 21.

PMID:
19162294
32.

Lead dustfall from demolition of scattered site family housing: developing a sampling methodology.

Mucha AP, Stites N, Evens A, MacRoy PM, Persky VW, Jacobs DE.

Environ Res. 2009 Feb;109(2):143-8. doi: 10.1016/j.envres.2008.10.010. Epub 2008 Dec 21.

PMID:
19105996
33.

Influence of a salt marsh plant (Halimione portulacoides) on the concentrations and potential mobility of metals in sediments.

Almeida CM, Mucha AP, Bordalo AA, Vasconcelos MT.

Sci Total Environ. 2008 Sep 15;403(1-3):188-95. doi: 10.1016/j.scitotenv.2008.05.044. Epub 2008 Jul 7.

PMID:
18606437
34.

Can PAHs influence Cu accumulation by salt marsh plants?

Almeida CM, Mucha AP, Delgado MF, Caçador MI, Bordalo AA, Vasconcelos MT.

Mar Environ Res. 2008 Sep;66(3):311-8. doi: 10.1016/j.marenvres.2008.04.005. Epub 2008 May 4.

PMID:
18539325
35.

Urinary 1-hydroxypyrene as a biomarker of PAH exposure in 3-year-old Ukrainian children.

Mucha AP, Hryhorczuk D, Serdyuk A, Nakonechny J, Zvinchuk A, Erdal S, Caudill M, Scheff P, Lukyanova E, Shkiryak-Nyzhnyk Z, Chislovska N.

Environ Health Perspect. 2006 Apr;114(4):603-9.

36.

Variability of metal contents in the sea rush Juncus maritimus-estuarine sediment system through one year of plant's life.

Almeida CM, Mucha AP, Vasconcelos MT.

Mar Environ Res. 2006 May;61(4):424-38. Epub 2006 Jan 24.

PMID:
16434094
38.

The role of a salt marsh plant on trace metal bioavailability in sediments. Estimation by different chemical approaches.

Almeida CM, Mucha AP, Vasconcelos MT.

Environ Sci Pollut Res Int. 2005 Sep;12(5):271-7.

PMID:
16206720
39.

Spatial and seasonal variations of the macrobenthic community and metal contamination in the Douro estuary (Portugal).

Mucha AP, Vasconcelos MT, Bordalo AA.

Mar Environ Res. 2005 Dec;60(5):531-50.

PMID:
15919109
40.

Sediment quality in the Douro river estuary based on trace metal contents, macrobenthic community and elutriate sediment toxicity test (ESTT).

Mucha AP, Bordalo AA, Vasconcelos MT.

J Environ Monit. 2004 Jul;6(7):585-92. Epub 2004 May 10.

PMID:
15237288
41.

Influence of the sea rush Juncus maritimus on metal concentration and speciation in estuarine sediment colonized by the plant.

Almeida CM, Mucha AP, Vasconcelos MT.

Environ Sci Technol. 2004 Jun 1;38(11):3112-8.

PMID:
15224743
42.

Comparison of the response of three microalgae species exposed to elutriates of estuarine sediments based on growth and chemical speciation.

Mucha AP, Leal MF, Bordalo AA, Vasconcelos MT.

Environ Toxicol Chem. 2003 Mar;22(3):576-85.

PMID:
12627645
43.

Macrobenthic community in the Douro estuary: relations with trace metals and natural sediment characteristics.

Mucha AP, Vasconcelos MT, Bordalo AA.

Environ Pollut. 2003;121(2):169-80.

PMID:
12521105

Supplemental Content

Loading ...
Support Center