Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 44

1.

An interaction network between the SNARE VAMP7 and Rab GTPases within a ciliary membrane-targeting complex.

Kandachar V, Tam BM, Moritz OL, Deretic D.

J Cell Sci. 2018 Dec 10;131(24). pii: jcs222034. doi: 10.1242/jcs.222034.

PMID:
30404838
2.

Generation and Analysis of Xenopus laevis Models of Retinal Degeneration Using CRISPR/Cas9.

Feehan JM, Stanar P, Tam BM, Chiu C, Moritz OL.

Methods Mol Biol. 2019;1834:193-207. doi: 10.1007/978-1-4939-8669-9_14.

PMID:
30324446
3.

Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration.

Viringipurampeer IA, Gregory-Evans CY, Metcalfe AL, Bashar E, Moritz OL, Gregory-Evans K.

Mol Neurobiol. 2018 Jun 18. doi: 10.1007/s12035-018-1192-8. [Epub ahead of print]

PMID:
29911255
4.

Modeling Dominant and Recessive Forms of Retinitis Pigmentosa by Editing Three Rhodopsin-Encoding Genes in Xenopus Laevis Using Crispr/Cas9.

Feehan JM, Chiu CN, Stanar P, Tam BM, Ahmed SN, Moritz OL.

Sci Rep. 2017 Jul 31;7(1):6920. doi: 10.1038/s41598-017-07153-4.

5.

Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic X. laevis Models of Retinitis Pigmentosa.

Vent-Schmidt RYJ, Wen RH, Zong Z, Chiu CN, Tam BM, May CG, Moritz OL.

J Neurosci. 2017 Jan 25;37(4):1039-1054. doi: 10.1523/JNEUROSCI.1647-16.2016.

6.

Molecular basis for photoreceptor outer segment architecture.

Goldberg AF, Moritz OL, Williams DS.

Prog Retin Eye Res. 2016 Nov;55:52-81. doi: 10.1016/j.preteyeres.2016.05.003. Epub 2016 Jun 1. Review.

7.

NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration.

Viringipurampeer IA, Metcalfe AL, Bashar AE, Sivak O, Yanai A, Mohammadi Z, Moritz OL, Gregory-Evans CY, Gregory-Evans K.

Hum Mol Genet. 2016 Apr 15;25(8):1501-16. doi: 10.1093/hmg/ddw029. Epub 2016 Feb 7.

8.
9.

Photoreceptors at a glance.

Molday RS, Moritz OL.

J Cell Sci. 2015 Nov 15;128(22):4039-45. doi: 10.1242/jcs.175687. Review.

10.

Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function.

Jiang L, Tam BM, Ying G, Wu S, Hauswirth WW, Frederick JM, Moritz OL, Baehr W.

FASEB J. 2015 Dec;29(12):4866-80. doi: 10.1096/fj.15-275677. Epub 2015 Jul 30.

11.

Preparation of Xenopus laevis retinal cryosections for electron microscopy.

Tam BM, Yang LL, Bogėa TH, Ross B, Martens G, Moritz OL.

Exp Eye Res. 2015 Jul;136:86-90. doi: 10.1016/j.exer.2015.05.014. Epub 2015 May 22.

PMID:
26008144
12.

Photoactivation-induced instability of rhodopsin mutants T4K and T17M in rod outer segments underlies retinal degeneration in X. laevis transgenic models of retinitis pigmentosa.

Tam BM, Noorwez SM, Kaushal S, Kono M, Moritz OL.

J Neurosci. 2014 Oct 1;34(40):13336-48. doi: 10.1523/JNEUROSCI.1655-14.2014.

13.

Mutant ELOVL4 that causes autosomal dominant stargardt-3 macular dystrophy is misrouted to rod outer segment disks.

Agbaga MP, Tam BM, Wong JS, Yang LL, Anderson RE, Moritz OL.

Invest Ophthalmol Vis Sci. 2014 May 15;55(6):3669-80. doi: 10.1167/iovs.13-13099.

14.

Targeting inflammation in emerging therapies for genetic retinal disease.

Viringipurampeer IA, Bashar AE, Gregory-Evans CY, Moritz OL, Gregory-Evans K.

Int J Inflam. 2013;2013:581751. doi: 10.1155/2013/581751. Epub 2013 Feb 21.

15.

Xenopus laevis tadpoles can regenerate neural retina lost after physical excision but cannot regenerate photoreceptors lost through targeted ablation.

Lee DC, Hamm LM, Moritz OL.

Invest Ophthalmol Vis Sci. 2013 Mar 13;54(3):1859-67. doi: 10.1167/iovs.12-10953.

PMID:
23425694
16.

Influence of Iron Oxide Nanoparticles on Innate and Genetically Modified Secretion Profiles of Mesenchymal Stem Cells.

Bashar AE, Metcalfe A, Yanai A, Laver C, Häfeli UO, Gregory-Evans CY, Moritz OL, Matsubara JA, Gregory-Evans K.

IEEE Trans Magn. 2013 Jan 1;49(1):389-393.

17.

Generation of transgenic X. laevis models of retinal degeneration.

Tam BM, Lai CC, Zong Z, Moritz OL.

Methods Mol Biol. 2013;935:113-25. doi: 10.1007/978-1-62703-080-9_8.

PMID:
23150364
18.

Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles.

Yanai A, Häfeli UO, Metcalfe AL, Soema P, Addo L, Gregory-Evans CY, Po K, Shan X, Moritz OL, Gregory-Evans K.

Cell Transplant. 2012;21(6):1137-48. doi: 10.3727/096368911X627435. Epub 2012 Mar 8.

PMID:
22405427
19.

Dysmorphic photoreceptors in a P23H mutant rhodopsin model of retinitis pigmentosa are metabolically active and capable of regenerating to reverse retinal degeneration.

Lee DC, Vazquez-Chona FR, Ferrell WD, Tam BM, Jones BW, Marc RE, Moritz OL.

J Neurosci. 2012 Feb 8;32(6):2121-8. doi: 10.1523/JNEUROSCI.4752-11.2012.

20.

Targeting of mouse guanylate cyclase 1 (Gucy2e) to Xenopus laevis rod outer segments.

Karan S, Tam BM, Moritz OL, Baehr W.

Vision Res. 2011 Nov;51(21-22):2304-11. doi: 10.1016/j.visres.2011.09.001. Epub 2011 Sep 12.

21.

In situ visualization of protein interactions in sensory neurons: glutamic acid-rich proteins (GARPs) play differential roles for photoreceptor outer segment scaffolding.

Ritter LM, Khattree N, Tam B, Moritz OL, Schmitz F, Goldberg AF.

J Neurosci. 2011 Aug 3;31(31):11231-43. doi: 10.1523/JNEUROSCI.2875-11.2011.

22.

Recent insights into the mechanisms underlying light-dependent retinal degeneration from X. laevis models of retinitis pigmentosa.

Moritz OL, Tam BM.

Adv Exp Med Biol. 2010;664:509-15. doi: 10.1007/978-1-4419-1399-9_58.

PMID:
20238053
23.

The role of rhodopsin glycosylation in protein folding, trafficking, and light-sensitive retinal degeneration.

Tam BM, Moritz OL.

J Neurosci. 2009 Dec 2;29(48):15145-54. doi: 10.1523/JNEUROSCI.4259-09.2009.

24.

The dependence of retinal degeneration caused by the rhodopsin P23H mutation on light exposure and vitamin a deprivation.

Tam BM, Qazalbash A, Lee HC, Moritz OL.

Invest Ophthalmol Vis Sci. 2010 Mar;51(3):1327-34. doi: 10.1167/iovs.09-4123. Epub 2009 Nov 20.

PMID:
19933196
25.

Fourier domain optical coherence tomography as a noninvasive means for in vivo detection of retinal degeneration in Xenopus laevis tadpoles.

Lee DC, Xu J, Sarunic MV, Moritz OL.

Invest Ophthalmol Vis Sci. 2010 Feb;51(2):1066-70. doi: 10.1167/iovs.09-4260. Epub 2009 Sep 9.

PMID:
19741241
26.

Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4.

Mazelova J, Astuto-Gribble L, Inoue H, Tam BM, Schonteich E, Prekeris R, Moritz OL, Randazzo PA, Deretic D.

EMBO J. 2009 Feb 4;28(3):183-92. doi: 10.1038/emboj.2008.267. Epub 2009 Jan 15.

27.

CRX controls retinal expression of the X-linked juvenile retinoschisis (RS1) gene.

Langmann T, Lai CC, Weigelt K, Tam BM, Warneke-Wittstock R, Moritz OL, Weber BH.

Nucleic Acids Res. 2008 Nov;36(20):6523-34. doi: 10.1093/nar/gkn737. Epub 2008 Oct 16.

28.

Controlled rod cell ablation in transgenic Xenopus laevis.

Hamm LM, Tam BM, Moritz OL.

Invest Ophthalmol Vis Sci. 2009 Feb;50(2):885-92. doi: 10.1167/iovs.08-2337. Epub 2008 Oct 3.

PMID:
18836175
30.
31.
32.

Uncoupling of photoreceptor peripherin/rds fusogenic activity from biosynthesis, subunit assembly, and targeting: a potential mechanism for pathogenic effects.

Ritter LM, Boesze-Battaglia K, Tam BM, Moritz OL, Khattree N, Chen SC, Goldberg AF.

J Biol Chem. 2004 Sep 17;279(38):39958-67. Epub 2004 Jul 13.

33.

The C terminus of peripherin/rds participates in rod outer segment targeting and alignment of disk incisures.

Tam BM, Moritz OL, Papermaster DS.

Mol Biol Cell. 2004 Apr;15(4):2027-37. Epub 2004 Feb 6.

34.

The role of subunit assembly in peripherin-2 targeting to rod photoreceptor disk membranes and retinitis pigmentosa.

Loewen CJ, Moritz OL, Tam BM, Papermaster DS, Molday RS.

Mol Biol Cell. 2003 Aug;14(8):3400-13. Epub 2003 May 3.

35.

Arrestin migrates in photoreceptors in response to light: a study of arrestin localization using an arrestin-GFP fusion protein in transgenic frogs.

Peterson JJ, Tam BM, Moritz OL, Shelamer CL, Dugger DR, McDowell JH, Hargrave PA, Papermaster DS, Smith WC.

Exp Eye Res. 2003 May;76(5):553-63.

PMID:
12697419
36.
37.

Selection of transgenic Xenopus laevis using antibiotic resistance.

Moritz OL, Biddle KE, Tam BM.

Transgenic Res. 2002 Jun;11(3):315-9.

PMID:
12113464
38.

Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods.

Moritz OL, Tam BM, Hurd LL, Peränen J, Deretic D, Papermaster DS.

Mol Biol Cell. 2001 Aug;12(8):2341-51.

39.
40.

Molecular characterization of peripherin-2 and rom-1 mutants responsible for digenic retinitis pigmentosa.

Loewen CJ, Moritz OL, Molday RS.

J Biol Chem. 2001 Jun 22;276(25):22388-96. Epub 2001 Apr 10.

41.
42.

Fluorescent photoreceptors of transgenic Xenopus laevis imaged in vivo by two microscopy techniques.

Moritz OL, Tam BM, Knox BE, Papermaster DS.

Invest Ophthalmol Vis Sci. 1999 Dec;40(13):3276-80.

PMID:
10586953
43.

Molecular cloning, membrane topology, and localization of bovine rom-1 in rod and cone photoreceptor cells.

Moritz OL, Molday RS.

Invest Ophthalmol Vis Sci. 1996 Feb;37(2):352-62.

PMID:
8603840
44.

Supplemental Content

Loading ...
Support Center