Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 35

1.

Novel Insights into Conformational Rearrangements of the Bacterial Flagellar Switch Complex.

Sakai T, Miyata T, Terahara N, Mori K, Inoue Y, Morimoto YV, Kato T, Namba K, Minamino T.

MBio. 2019 Apr 2;10(2). pii: e00079-19. doi: 10.1128/mBio.00079-19.

2.

Collective cell migration of Dictyostelium without cAMP oscillations at multicellular stages.

Hashimura H, Morimoto YV, Yasui M, Ueda M.

Commun Biol. 2019 Jan 24;2:34. doi: 10.1038/s42003-018-0273-6. eCollection 2019.

3.

Effect of the MotA(M206I) Mutation on Torque Generation and Stator Assembly in the Salmonella H+-Driven Flagellar Motor.

Suzuki Y, Morimoto YV, Oono K, Hayashi F, Oosawa K, Kudo S, Nakamura S.

J Bacteriol. 2019 Feb 25;201(6). pii: e00727-18. doi: 10.1128/JB.00727-18. Print 2019 Mar 15.

4.

A study of wound repair in Dictyostelium cells by using novel laserporation.

Pervin MS, Itoh G, Talukder MSU, Fujimoto K, Morimoto YV, Tanaka M, Ueda M, Yumura S.

Sci Rep. 2018 May 22;8(1):7969. doi: 10.1038/s41598-018-26337-0.

5.

Insight into structural remodeling of the FlhA ring responsible for bacterial flagellar type III protein export.

Terahara N, Inoue Y, Kodera N, Morimoto YV, Uchihashi T, Imada K, Ando T, Namba K, Minamino T.

Sci Adv. 2018 Apr 25;4(4):eaao7054. doi: 10.1126/sciadv.aao7054. eCollection 2018 Apr.

6.

Novel insights into the mechanism of well-ordered assembly of bacterial flagellar proteins in Salmonella.

Inoue Y, Morimoto YV, Namba K, Minamino T.

Sci Rep. 2018 Jan 29;8(1):1787. doi: 10.1038/s41598-018-20209-3.

7.

Structural differences in the bacterial flagellar motor among bacterial species.

Terashima H, Kawamoto A, Morimoto YV, Imada K, Minamino T.

Biophys Physicobiol. 2017 Dec 19;14:191-198. doi: 10.2142/biophysico.14.0_191. eCollection 2017. Review.

8.

Tunnel Formation Inferred from the I-Form Structures of the Proton-Driven Protein Secretion Motor SecDF.

Furukawa A, Yoshikaie K, Mori T, Mori H, Morimoto YV, Sugano Y, Iwaki S, Minamino T, Sugita Y, Tanaka Y, Tsukazaki T.

Cell Rep. 2017 May 2;19(5):895-901. doi: 10.1016/j.celrep.2017.04.030.

9.

Straight and rigid flagellar hook made by insertion of the FlgG specific sequence into FlgE.

Hiraoka KD, Morimoto YV, Inoue Y, Fujii T, Miyata T, Makino F, Minamino T, Namba K.

Sci Rep. 2017 Apr 21;7:46723. doi: 10.1038/srep46723.

10.

Stoichiometry and Turnover of the Stator and Rotor.

Morimoto YV, Minamino T.

Methods Mol Biol. 2017;1593:203-213. doi: 10.1007/978-1-4939-6927-2_16.

PMID:
28389956
11.

High-Resolution pH Imaging of Living Bacterial Cells To Detect Local pH Differences.

Morimoto YV, Kami-Ike N, Miyata T, Kawamoto A, Kato T, Namba K, Minamino T.

MBio. 2016 Dec 6;7(6). pii: e01911-16. doi: 10.1128/mBio.01911-16.

12.

The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export.

Minamino T, Morimoto YV, Hara N, Aldridge PD, Namba K.

PLoS Pathog. 2016 Mar 4;12(3):e1005495. doi: 10.1371/journal.ppat.1005495. eCollection 2016 Mar.

13.

FliH and FliI ensure efficient energy coupling of flagellar type III protein export in Salmonella.

Minamino T, Kinoshita M, Inoue Y, Morimoto YV, Ihara K, Koya S, Hara N, Nishioka N, Kojima S, Homma M, Namba K.

Microbiologyopen. 2016 Jun;5(3):424-35. doi: 10.1002/mbo3.340. Epub 2016 Feb 25.

14.

Domain-swap polymerization drives the self-assembly of the bacterial flagellar motor.

Baker MA, Hynson RM, Ganuelas LA, Mohammadi NS, Liew CW, Rey AA, Duff AP, Whitten AE, Jeffries CM, Delalez NJ, Morimoto YV, Stock D, Armitage JP, Turberfield AJ, Namba K, Berry RM, Lee LK.

Nat Struct Mol Biol. 2016 Mar;23(3):197-203. doi: 10.1038/nsmb.3172. Epub 2016 Feb 8.

PMID:
26854663
15.

H(+) and Na(+) are involved in flagellar rotation of the spirochete Leptospira.

Islam MS, Morimoto YV, Kudo S, Nakamura S.

Biochem Biophys Res Commun. 2015 Oct 16;466(2):196-200. doi: 10.1016/j.bbrc.2015.09.004. Epub 2015 Sep 5.

PMID:
26348776
16.

A lactose fermentation product produced by Lactococcus lactis subsp. lactis, acetate, inhibits the motility of flagellated pathogenic bacteria.

Nakamura S, Morimoto YV, Kudo S.

Microbiology. 2015 Apr;161(Pt 4):701-7. doi: 10.1099/mic.0.000031. Epub 2015 Jan 8.

PMID:
25573770
17.

The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis.

Minamino T, Morimoto YV, Kinoshita M, Aldridge PD, Namba K.

Sci Rep. 2014 Dec 22;4:7579. doi: 10.1038/srep07579.

18.

Assembly dynamics and the roles of FliI ATPase of the bacterial flagellar export apparatus.

Bai F, Morimoto YV, Yoshimura SD, Hara N, Kami-Ike N, Namba K, Minamino T.

Sci Rep. 2014 Oct 6;4:6528. doi: 10.1038/srep06528.

19.

Structure and function of the bi-directional bacterial flagellar motor.

Morimoto YV, Minamino T.

Biomolecules. 2014 Feb 18;4(1):217-34. doi: 10.3390/biom4010217. Review.

20.

Assembly and stoichiometry of FliF and FlhA in Salmonella flagellar basal body.

Morimoto YV, Ito M, Hiraoka KD, Che YS, Bai F, Kami-Ike N, Namba K, Minamino T.

Mol Microbiol. 2014 Mar;91(6):1214-26. doi: 10.1111/mmi.12529. Epub 2014 Feb 15.

21.

Common and distinct structural features of Salmonella injectisome and flagellar basal body.

Kawamoto A, Morimoto YV, Miyata T, Minamino T, Hughes KT, Kato T, Namba K.

Sci Rep. 2013 Nov 28;3:3369. doi: 10.1038/srep03369.

22.

Load-sensitive coupling of proton translocation and torque generation in the bacterial flagellar motor.

Che YS, Nakamura S, Morimoto YV, Kami-Ike N, Namba K, Minamino T.

Mol Microbiol. 2014 Jan;91(1):175-84. doi: 10.1111/mmi.12453. Epub 2013 Nov 20.

23.

Na+ conductivity of the Na+-driven flagellar motor complex composed of unplugged wild-type or mutant PomB with PomA.

Takekawa N, Terauchi T, Morimoto YV, Minamino T, Lo CJ, Kojima S, Homma M.

J Biochem. 2013 May;153(5):441-51. doi: 10.1093/jb/mvt011. Epub 2013 Feb 18.

PMID:
23420849
24.

Isolation of Salmonella mutants resistant to the inhibitory effect of Salicylidene acylhydrazides on flagella-mediated motility.

Martinez-Argudo I, Veenendaal AK, Liu X, Roehrich AD, Ronessen MC, Franzoni G, van Rietschoten KN, Morimoto YV, Saijo-Hamano Y, Avison MB, Studholme DJ, Namba K, Minamino T, Blocker AJ.

PLoS One. 2013;8(1):e52179. doi: 10.1371/journal.pone.0052179. Epub 2013 Jan 2.

25.

The C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor.

Castillo DJ, Nakamura S, Morimoto YV, Che YS, Kami-Ike N, Kudo S, Minamino T, Namba K.

Biophysics (Nagoya-shi). 2013 Dec 26;9:173-81. doi: 10.2142/biophysics.9.173. eCollection 2013.

26.

Role of the Dc domain of the bacterial hook protein FlgE in hook assembly and function.

Moriya N, Minamino T, Ferris HU, Morimoto YV, Ashihara M, Kato T, Namba K.

Biophysics (Nagoya-shi). 2013 Jun 6;9:63-72. doi: 10.2142/biophysics.9.63. eCollection 2013.

27.

Distinct roles of highly conserved charged residues at the MotA-FliG interface in bacterial flagellar motor rotation.

Morimoto YV, Nakamura S, Hiraoka KD, Namba K, Minamino T.

J Bacteriol. 2013 Feb;195(3):474-81. doi: 10.1128/JB.01971-12. Epub 2012 Nov 16.

28.

Interaction of the extreme N-terminal region of FliH with FlhA is required for efficient bacterial flagellar protein export.

Hara N, Morimoto YV, Kawamoto A, Namba K, Minamino T.

J Bacteriol. 2012 Oct;194(19):5353-60. doi: 10.1128/JB.01028-12. Epub 2012 Jul 27.

29.

An energy transduction mechanism used in bacterial flagellar type III protein export.

Minamino T, Morimoto YV, Hara N, Namba K.

Nat Commun. 2011 Sep 20;2:475. doi: 10.1038/ncomms1488.

30.

Structural insight into the rotational switching mechanism of the bacterial flagellar motor.

Minamino T, Imada K, Kinoshita M, Nakamura S, Morimoto YV, Namba K.

PLoS Biol. 2011 May;9(5):e1000616. doi: 10.1371/journal.pbio.1000616. Epub 2011 May 10.

31.

M153R mutation in a pH-sensitive green fluorescent protein stabilizes its fusion proteins.

Morimoto YV, Kojima S, Namba K, Minamino T.

PLoS One. 2011 May 3;6(5):e19598. doi: 10.1371/journal.pone.0019598.

32.

Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor.

Morimoto YV, Nakamura S, Kami-ike N, Namba K, Minamino T.

Mol Microbiol. 2010 Dec;78(5):1117-29. doi: 10.1111/j.1365-2958.2010.07391.x. Epub 2010 Sep 27.

33.

Proton-conductivity assay of plugged and unplugged MotA/B proton channel by cytoplasmic pHluorin expressed in Salmonella.

Morimoto YV, Che YS, Minamino T, Namba K.

FEBS Lett. 2010 Mar 19;584(6):1268-72. doi: 10.1016/j.febslet.2010.02.051. Epub 2010 Feb 21.

34.

Roles of the extreme N-terminal region of FliH for efficient localization of the FliH-FliI complex to the bacterial flagellar type III export apparatus.

Minamino T, Yoshimura SD, Morimoto YV, González-Pedrajo B, Kami-Ike N, Namba K.

Mol Microbiol. 2009 Dec;74(6):1471-83. doi: 10.1111/j.1365-2958.2009.06946.x. Epub 2009 Nov 2.

35.

Role of a conserved prolyl residue (Pro173) of MotA in the mechanochemical reaction cycle of the proton-driven flagellar motor of Salmonella.

Nakamura S, Morimoto YV, Kami-ike N, Minamino T, Namba K.

J Mol Biol. 2009 Oct 23;393(2):300-7. doi: 10.1016/j.jmb.2009.08.022. Epub 2009 Aug 14.

PMID:
19683537

Supplemental Content

Loading ...
Support Center