Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 60

1.

Distinct calcium signals in developing cortical interneurons persist despite disorganization of cortex by Tbr1 KO.

Easton CR, Dickey CW, Moen SP, Neuzil KE, Barger Z, Anderson TM, Moody WJ, Hevner RF.

Dev Neurobiol. 2016 Jul;76(7):705-20. doi: 10.1002/dneu.22354. Epub 2015 Nov 3.

2.

Early network activity propagates bidirectionally between hippocampus and cortex.

Barger Z, Easton CR, Neuzil KE, Moody WJ.

Dev Neurobiol. 2016 Jun;76(6):661-72. doi: 10.1002/dneu.22351. Epub 2015 Oct 12.

3.

Intrinsic neuronal properties switch the mode of information transmission in networks.

Gjorgjieva J, Mease RA, Moody WJ, Fairhall AL.

PLoS Comput Biol. 2014 Dec 4;10(12):e1003962. doi: 10.1371/journal.pcbi.1003962. eCollection 2014 Dec.

4.

Relationship between individual neuron and network spontaneous activity in developing mouse cortex.

Barnett HM, Gjorgjieva J, Weir K, Comfort C, Fairhall AL, Moody WJ.

J Neurophysiol. 2014 Dec 15;112(12):3033-45. doi: 10.1152/jn.00349.2014. Epub 2014 Sep 3.

5.

Genetic elimination of GABAergic neurotransmission reveals two distinct pacemakers for spontaneous waves of activity in the developing mouse cortex.

Easton CR, Weir K, Scott A, Moen SP, Barger Z, Folch A, Hevner RF, Moody WJ.

J Neurosci. 2014 Mar 12;34(11):3854-63. doi: 10.1523/JNEUROSCI.3811-13.2014.

6.

Emergence of adaptive computation by single neurons in the developing cortex.

Mease RA, Famulare M, Gjorgjieva J, Moody WJ, Fairhall AL.

J Neurosci. 2013 Jul 24;33(30):12154-70. doi: 10.1523/JNEUROSCI.3263-12.2013.

7.

A microfluidic microelectrode array for simultaneous electrophysiology, chemical stimulation, and imaging of brain slices.

Scott A, Weir K, Easton C, Huynh W, Moody WJ, Folch A.

Lab Chip. 2013 Feb 21;13(4):527-35. doi: 10.1039/c2lc40826k.

8.

Developmental changes in propagation patterns and transmitter dependence of waves of spontaneous activity in the mouse cerebral cortex.

Conhaim J, Easton CR, Becker MI, Barahimi M, Cedarbaum ER, Moore JG, Mather LF, Dabagh S, Minter DJ, Moen SP, Moody WJ.

J Physiol. 2011 May 15;589(Pt 10):2529-41. doi: 10.1113/jphysiol.2010.202382. Epub 2011 Mar 28.

9.

Bimodal septal and cortical triggering and complex propagation patterns of spontaneous waves of activity in the developing mouse cerebral cortex.

Conhaim J, Cedarbaum ER, Barahimi M, Moore JG, Becker MI, Gleiss H, Kohl C, Moody WJ.

Dev Neurobiol. 2010 Sep;70(10):679-92. doi: 10.1002/dneu.20797.

10.

Bilaterally propagating waves of spontaneous activity arising from discrete pacemakers in the neonatal mouse cerebral cortex.

Lischalk JW, Easton CR, Moody WJ.

Dev Neurobiol. 2009 Jun;69(7):407-14. doi: 10.1002/dneu.20708.

11.

Elevated glutamate and NMDA disrupt production of the second messenger cyclic GMP in the early postnatal mouse cortex.

Currie DA, Corlew R, de Vente J, Moody WJ.

Dev Neurobiol. 2009 Mar;69(4):255-66. doi: 10.1002/dneu.20697.

12.
13.

The self-regulating nature of spontaneous synchronized activity in developing mouse cortical neurones.

McCabe AK, Chisholm SL, Picken-Bahrey HL, Moody WJ.

J Physiol. 2006 Nov 15;577(Pt 1):155-67. Epub 2006 Aug 31.

15.
17.

Spontaneous, synchronous electrical activity in neonatal mouse cortical neurones.

Corlew R, Bosma MM, Moody WJ.

J Physiol. 2004 Oct 15;560(Pt 2):377-90. Epub 2004 Aug 5.

18.
19.

Early development of voltage-gated ion currents and firing properties in neurons of the mouse cerebral cortex.

Picken Bahrey HL, Moody WJ.

J Neurophysiol. 2003 Apr;89(4):1761-73. Epub 2002 Dec 11.

20.

Voltage-gated currents, dye and electrical coupling in the embryonic mouse neocortex.

Bahrey HL, Moody WJ.

Cereb Cortex. 2003 Mar;13(3):239-51.

PMID:
12571114
21.

Neuroscience and evolution. Snake sodium channels resist TTX arrest.

Huey RB, Moody WJ.

Science. 2002 Aug 23;297(5585):1289-90. No abstract available.

PMID:
12193775
22.

Attitudes of paediatric medical ward staff to a dog visitation programme.

Moody WJ, King R, O'Rourke S.

J Clin Nurs. 2002 Jul;11(4):537-44.

PMID:
12100650
23.
24.
25.

Control of spontaneous activity during development.

Moody WJ.

J Neurobiol. 1998 Oct;37(1):97-109. Review.

PMID:
9777735
26.
27.
28.

Co-ordinated modulation of Ca2+ and K+ currents during ascidian muscle development.

Greaves AA, Davis AK, Dallman JE, Moody WJ.

J Physiol. 1996 Nov 15;497 ( Pt 1):39-52.

29.
30.
31.

Comparison of ionic currents expressed in immature and mature muscle cells of an ascidian larva.

Davis AK, Greaves AA, Dallman JE, Moody WJ.

J Neurosci. 1995 Jul;15(7 Pt 1):4875-84.

32.
33.
34.
35.

Evidence for a peripheral olfactory memory in imprinted salmon.

Nevitt GA, Dittman AH, Quinn TP, Moody WJ Jr.

Proc Natl Acad Sci U S A. 1994 May 10;91(10):4288-92.

36.
37.

Changes in voltage-dependent ion currents during meiosis and first mitosis in eggs of an ascidian.

Coombs JL, Villaz M, Moody WJ.

Dev Biol. 1992 Oct;153(2):272-82.

PMID:
1397684
39.

Development of ion channels in early embryos.

Moody WJ, Simoncini L, Coombs JL, Spruce AE, Villaz M.

J Neurobiol. 1991 Oct;22(7):674-84. Review. No abstract available.

PMID:
1722507
41.
42.

A voltage-dependent chloride current linked to the cell cycle in ascidian embryos.

Block ML, Moody WJ.

Science. 1990 Mar 2;247(4946):1090-2.

PMID:
2309122
44.
45.

Lineage-specific development of calcium currents during embryogenesis.

Simoncini L, Block ML, Moody WJ.

Science. 1988 Dec 16;242(4885):1572-5.

PMID:
2849207
48.
49.

Calcium-dependent action potentials in the prothoracic gland of Manduca sexta.

Eusebio EJ, Moody WJ.

J Exp Biol. 1986 Nov;126:531-6. No abstract available.

Supplemental Content

Loading ...
Support Center