Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 126

1.

Why suspects confess: The power of outcome certainty.

Yang Y, Moody SA, Cabell JJ, Madon S.

Law Hum Behav. 2019 Oct;43(5):468-476. doi: 10.1037/lhb0000350.

PMID:
31524435
2.

In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: are they all suspects?

Motahari Z, Moody SA, Maynard TM, LaMantia AS.

J Neurodev Disord. 2019 Jun 7;11(1):7. doi: 10.1186/s11689-019-9267-z. Review.

3.

An expected cost model of eyewitness identification.

Yang Y, Smalarz L, Moody SA, Cabell JJ, Copp CJ.

Law Hum Behav. 2019 Jun;43(3):205-219. doi: 10.1037/lhb0000331. Epub 2019 May 2.

PMID:
31045389
4.

Microsampling Capillary Electrophoresis Mass Spectrometry Enables Single-Cell Proteomics in Complex Tissues: Developing Cell Clones in Live Xenopus laevis and Zebrafish Embryos.

Lombard-Banek C, Moody SA, Manzini MC, Nemes P.

Anal Chem. 2019 Apr 2;91(7):4797-4805. doi: 10.1021/acs.analchem.9b00345. Epub 2019 Mar 18.

PMID:
30827088
5.

The Society for Craniofacial Genetics and Developmental Biology 41st Annual Meeting.

Taneyhill LA, Moody SA, Cox T, Klein OD, Marcucio R, Schneider RA, Trainor PA.

Am J Med Genet A. 2019 May;179(5):864-869. doi: 10.1002/ajmg.a.61090. Epub 2019 Feb 22.

PMID:
30793834
6.

Six1 and Irx1 have reciprocal interactions during cranial placode and otic vesicle formation.

Sullivan CH, Majumdar HD, Neilson KM, Moody SA.

Dev Biol. 2019 Feb 1;446(1):68-79. doi: 10.1016/j.ydbio.2018.12.003. Epub 2018 Dec 6.

PMID:
30529252
7.

Microinjection of mRNAs and Oligonucleotides.

Moody SA.

Cold Spring Harb Protoc. 2018 Dec 3;2018(12). doi: 10.1101/pdb.prot097261.

PMID:
29769401
8.

Cleavage Blastomere Deletion and Transplantation to Test Cell Fate Commitment in Xenopus.

Moody SA.

Cold Spring Harb Protoc. 2019 Jan 2;2019(1). doi: 10.1101/pdb.prot097311.

PMID:
29769398
9.

Analysis of Cell Fate Commitment in Xenopus Embryos.

Moody SA.

Cold Spring Harb Protoc. 2019 Jan 2;2019(1). doi: 10.1101/pdb.top097246.

PMID:
29769394
10.

Cleavage Blastomere Explant Culture in Xenopus.

Moody SA.

Cold Spring Harb Protoc. 2019 Jan 2;2019(1). doi: 10.1101/pdb.prot097303.

PMID:
29769392
11.

Lineage Tracing and Fate Mapping in Xenopus Embryos.

Moody SA.

Cold Spring Harb Protoc. 2018 Dec 3;2018(12). doi: 10.1101/pdb.prot097253.

PMID:
29769388
12.

Proteomic Characterization of the Neural Ectoderm Fated Cell Clones in the Xenopus laevis Embryo by High-Resolution Mass Spectrometry.

Baxi AB, Lombard-Banek C, Moody SA, Nemes P.

ACS Chem Neurosci. 2018 Aug 15;9(8):2064-2073. doi: 10.1021/acschemneuro.7b00525. Epub 2018 Apr 5.

13.

Microprobe Capillary Electrophoresis Mass Spectrometry for Single-cell Metabolomics in Live Frog (Xenopus laevis) Embryos.

Onjiko RM, Portero EP, Moody SA, Nemes P.

J Vis Exp. 2017 Dec 22;(130). doi: 10.3791/56956.

14.

Metabolic Comparison of Dorsal versus Ventral Cells Directly in the Live 8-cell Frog Embryo by Microprobe Single-cell CE-ESI-MS.

Onjiko RM, Plotnick DO, Moody SA, Nemes P.

Anal Methods. 2017 Sep 14;9(34):4964-4970. doi: 10.1039/C7AY00834A. Epub 2017 May 9.

15.

Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates.

Marchak A, Grant PA, Neilson KM, Datta Majumdar H, Yaklichkin S, Johnson D, Moody SA.

Dev Biol. 2017 Sep 1;429(1):213-224. doi: 10.1016/j.ydbio.2017.06.025. Epub 2017 Jun 27.

16.

In Situ Microprobe Single-Cell Capillary Electrophoresis Mass Spectrometry: Metabolic Reorganization in Single Differentiating Cells in the Live Vertebrate (Xenopus laevis) Embryo.

Onjiko RM, Portero EP, Moody SA, Nemes P.

Anal Chem. 2017 Jul 5;89(13):7069-7076. doi: 10.1021/acs.analchem.7b00880. Epub 2017 May 1.

17.

Foxd4 is essential for establishing neural cell fate and for neuronal differentiation.

Sherman JH, Karpinski BA, Fralish MS, Cappuzzo JM, Dhindsa DS, Thal AG, Moody SA, LaMantia AS, Maynard TM.

Genesis. 2017 Jun;55(6). doi: 10.1002/dvg.23031. Epub 2017 Apr 3.

18.

Using Xenopus to understand human disease and developmental disorders.

Sater AK, Moody SA.

Genesis. 2017 Jan;55(1-2). doi: 10.1002/dvg.22997. Review.

PMID:
28095616
19.

Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development.

Neilson KM, Abbruzzesse G, Kenyon K, Bartolo V, Krohn P, Alfandari D, Moody SA.

Dev Biol. 2017 Jan 15;421(2):171-182. doi: 10.1016/j.ydbio.2016.11.021. Epub 2016 Dec 9.

20.

High-Sensitivity Mass Spectrometry for Probing Gene Translation in Single Embryonic Cells in the Early Frog (Xenopus) Embryo.

Lombard-Banek C, Moody SA, Nemes P.

Front Cell Dev Biol. 2016 Oct 5;4:100. eCollection 2016.

22.

Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm.

Gaur S, Mandelbaum M, Herold M, Majumdar HD, Neilson KM, Maynard TM, Mood K, Daar IO, Moody SA.

Genesis. 2016 Jun;54(6):334-49. doi: 10.1002/dvg.22943. Epub 2016 May 3.

23.

Single-cell mass spectrometry with multi-solvent extraction identifies metabolic differences between left and right blastomeres in the 8-cell frog (Xenopus) embryo.

Onjiko RM, Morris SE, Moody SA, Nemes P.

Analyst. 2016 Jun 21;141(12):3648-56. doi: 10.1039/c6an00200e. Epub 2016 Mar 23.

24.

A cellular and molecular mosaic establishes growth and differentiation states for cranial sensory neurons.

Karpinski BA, Bryan CA, Paronett EM, Baker JL, Fernandez A, Horvath A, Maynard TM, Moody SA, LaMantia AS.

Dev Biol. 2016 Jul 15;415(2):228-241. doi: 10.1016/j.ydbio.2016.03.015. Epub 2016 Mar 15.

25.

When Family History Matters: The Importance of Lineage Analyses and Fate Maps for Explaining Animal Development.

Klein SL, Moody SA.

Curr Top Dev Biol. 2016;117:93-112. doi: 10.1016/bs.ctdb.2015.10.011. Epub 2016 Jan 7. Review.

PMID:
26969974
26.

Single-Cell Mass Spectrometry for Discovery Proteomics: Quantifying Translational Cell Heterogeneity in the 16-Cell Frog (Xenopus) Embryo.

Lombard-Banek C, Moody SA, Nemes P.

Angew Chem Int Ed Engl. 2016 Feb 12;55(7):2454-8. doi: 10.1002/anie.201510411. Epub 2016 Jan 12.

27.

Hard to swallow: Developmental biological insights into pediatric dysphagia.

LaMantia AS, Moody SA, Maynard TM, Karpinski BA, Zohn IE, Mendelowitz D, Lee NH, Popratiloff A.

Dev Biol. 2016 Jan 15;409(2):329-42. doi: 10.1016/j.ydbio.2015.09.024. Epub 2015 Nov 7. Review.

28.

Using Xenopus to discover new genes involved in branchiootorenal spectrum disorders.

Moody SA, Neilson KM, Kenyon KL, Alfandari D, Pignoni F.

Comp Biochem Physiol C Toxicol Pharmacol. 2015 Dec;178:16-24. doi: 10.1016/j.cbpc.2015.06.007. Epub 2015 Jun 24. Review.

29.

Single-cell mass spectrometry reveals small molecules that affect cell fates in the 16-cell embryo.

Onjiko RM, Moody SA, Nemes P.

Proc Natl Acad Sci U S A. 2015 May 26;112(21):6545-50. doi: 10.1073/pnas.1423682112. Epub 2015 May 4.

30.

Early neural ectodermal genes are activated by Siamois and Twin during blastula stages.

Klein SL, Moody SA.

Genesis. 2015 May;53(5):308-20. doi: 10.1002/dvg.22854. Epub 2015 May 5.

PMID:
25892704
31.

Transcriptional regulation of cranial sensory placode development.

Moody SA, LaMantia AS.

Curr Top Dev Biol. 2015;111:301-50. doi: 10.1016/bs.ctdb.2014.11.009. Epub 2015 Jan 22. Review.

32.

Subcellular metabolite and lipid analysis of Xenopus laevis eggs by LAESI mass spectrometry.

Shrestha B, Sripadi P, Reschke BR, Henderson HD, Powell MJ, Moody SA, Vertes A.

PLoS One. 2014 Dec 15;9(12):e115173. doi: 10.1371/journal.pone.0115173. eCollection 2014.

33.

Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development.

Yan B, Neilson KM, Ranganathan R, Maynard T, Streit A, Moody SA.

Dev Dyn. 2015 Feb;244(2):181-210. doi: 10.1002/dvdy.24229. Epub 2014 Dec 16.

34.

Neural transcription factors: from embryos to neural stem cells.

Lee HK, Lee HS, Moody SA.

Mol Cells. 2014 Oct 31;37(10):705-12. doi: 10.14348/molcells.2014.0227. Epub 2014 Sep 18. Review.

35.

In situ metabolic analysis of single plant cells by capillary microsampling and electrospray ionization mass spectrometry with ion mobility separation.

Zhang L, Foreman DP, Grant PA, Shrestha B, Moody SA, Villiers F, Kwak JM, Vertes A.

Analyst. 2014 Oct 21;139(20):5079-85. doi: 10.1039/c4an01018c. Epub 2014 Aug 11.

PMID:
25109271
36.

Establishing the pre-placodal region and breaking it into placodes with distinct identities.

Saint-Jeannet JP, Moody SA.

Dev Biol. 2014 May 1;389(1):13-27. doi: 10.1016/j.ydbio.2014.02.011. Epub 2014 Feb 24. Review.

37.

Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome.

Karpinski BA, Maynard TM, Fralish MS, Nuwayhid S, Zohn IE, Moody SA, LaMantia AS.

Dis Model Mech. 2014 Feb;7(2):245-57. doi: 10.1242/dmm.012484. Epub 2013 Dec 19.

38.

Novel animal pole-enriched maternal mRNAs are preferentially expressed in neural ectoderm.

Grant PA, Yan B, Johnson MA, Johnson DL, Moody SA.

Dev Dyn. 2014 Mar;243(3):478-96. doi: 10.1002/dvdy.24082. Epub 2013 Dec 21.

39.

On becoming neural: what the embryo can tell us about differentiating neural stem cells.

Moody SA, Klein SL, Karpinski BA, Maynard TM, Lamantia AS.

Am J Stem Cells. 2013 Jun 30;2(2):74-94. Print 2013.

40.

Conserved structural domains in FoxD4L1, a neural forkhead box transcription factor, are required to repress or activate target genes.

Klein SL, Neilson KM, Orban J, Yaklichkin S, Hoffbauer J, Mood K, Daar IO, Moody SA.

PLoS One. 2013 Apr 16;8(4):e61845. doi: 10.1371/journal.pone.0061845. Print 2013. Erratum in: PLoS One. 2013;8(4). doi: 10.1371/annotation/b1f1b311-f2ec-4c09-870f-5771fcbdc3ed.

41.

Blastomere explants to test for cell fate commitment during embryonic development.

Grant PA, Herold MB, Moody SA.

J Vis Exp. 2013 Jan 26;(71). pii: 4458. doi: 10.3791/4458.

42.

Testing retina fate commitment in Xenopus by blastomere deletion, transplantation, and explant culture.

Moody SA.

Methods Mol Biol. 2012;884:115-27. doi: 10.1007/978-1-61779-848-1_7.

PMID:
22688701
43.

Targeted microinjection of synthetic mRNAs to alter retina gene expression in Xenopus embryos.

Moody SA.

Methods Mol Biol. 2012;884:91-111. doi: 10.1007/978-1-61779-848-1_6.

PMID:
22688700
44.

Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate.

Neilson KM, Klein SL, Mhaske P, Mood K, Daar IO, Moody SA.

Dev Biol. 2012 May 15;365(2):363-75. doi: 10.1016/j.ydbio.2012.03.004. Epub 2012 Mar 10.

45.

Using 32-cell stage Xenopus embryos to probe PCP signaling.

Lee HS, Sokol SY, Moody SA, Daar IO.

Methods Mol Biol. 2012;839:91-104. doi: 10.1007/978-1-61779-510-7_8.

46.

Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone.

Gee ST, Milgram SL, Kramer KL, Conlon FL, Moody SA.

PLoS One. 2011;6(6):e20309. doi: 10.1371/journal.pone.0020309. Epub 2011 Jun 8.

47.

Special issue on craniofacial development. Editorial.

Farlie P, Moody SA.

Genesis. 2011 Apr;49(4):161-2. doi: 10.1002/dvg.20752. No abstract available.

PMID:
21500338
48.

Developmental expression patterns of candidate cofactors for vertebrate six family transcription factors.

Neilson KM, Pignoni F, Yan B, Moody SA.

Dev Dyn. 2010 Dec;239(12):3446-66. doi: 10.1002/dvdy.22484.

49.
50.

Highlighted article: "E(nos)/CG4699 is required for nanos function in the female germ line of Drosophila" by Yu, Song and Wharton.

Moody SA.

Genesis. 2010 Mar;48(3):145. doi: 10.1002/dvg.20617. No abstract available.

PMID:
20213662

Supplemental Content

Loading ...
Support Center