Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 42

1.

The role of Ap2a2 in PPARα-mediated regulation of lipolysis in adipose tissue.

Montgomery MK, Bayliss J, Keenan S, Rhost S, Ting SB, Watt MJ.

FASEB J. 2019 Sep 18:fj201900909RR. doi: 10.1096/fj.201900909RR. [Epub ahead of print]

PMID:
31533003
2.

Regulation of mitochondrial metabolism in murine skeletal muscle by the medium-chain fatty acid receptor Gpr84.

Montgomery MK, Osborne B, Brandon AE, O'Reilly L, Fiveash CE, Brown SHJ, Wilkins BP, Samsudeen A, Yu J, Devanapalli B, Hertzog A, Tolun AA, Kavanagh T, Cooper AA, Mitchell TW, Biden TJ, Smith NJ, Cooney GJ, Turner N.

FASEB J. 2019 Aug 15:fj201900234R. doi: 10.1096/fj.201900234R. [Epub ahead of print]

PMID:
31415180
3.

The Liver as an Endocrine Organ-Linking NAFLD and Insulin Resistance.

Watt MJ, Miotto PM, De Nardo W, Montgomery MK.

Endocr Rev. 2019 Oct 1;40(5):1367-1393. doi: 10.1210/er.2019-00034.

PMID:
31098621
4.

Mitochondrial Dysfunction and Diabetes: Is Mitochondrial Transfer a Friend or Foe?

Montgomery MK.

Biology (Basel). 2019 May 11;8(2). pii: E33. doi: 10.3390/biology8020033. Review.

5.

Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer.

Watt MJ, Clark AK, Selth LA, Haynes VR, Lister N, Rebello R, Porter LH, Niranjan B, Whitby ST, Lo J, Huang C, Schittenhelm RB, Anderson KE, Furic L, Wijayaratne PR, Matzaris M, Montgomery MK, Papargiris M, Norden S, Febbraio M, Risbridger GP, Frydenberg M, Nomura DK, Taylor RA.

Sci Transl Med. 2019 Feb 6;11(478). pii: eaau5758. doi: 10.1126/scitranslmed.aau5758.

PMID:
30728288
6.

Impact of Lipotoxicity on Tissue "Cross Talk" and Metabolic Regulation.

Montgomery MK, De Nardo W, Watt MJ.

Physiology (Bethesda). 2019 Mar 1;34(2):134-149. doi: 10.1152/physiol.00037.2018. Review.

PMID:
30724128
7.

Perilipin 5 Deletion in Hepatocytes Remodels Lipid Metabolism and Causes Hepatic Insulin Resistance in Mice.

Keenan SN, Meex RC, Lo JCY, Ryan A, Nie S, Montgomery MK, Watt MJ.

Diabetes. 2019 Mar;68(3):543-555. doi: 10.2337/db18-0670. Epub 2019 Jan 7.

8.

A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism.

Turner N, Lim XY, Toop HD, Osborne B, Brandon AE, Taylor EN, Fiveash CE, Govindaraju H, Teo JD, McEwen HP, Couttas TA, Butler SM, Das A, Kowalski GM, Bruce CR, Hoehn KL, Fath T, Schmitz-Peiffer C, Cooney GJ, Montgomery MK, Morris JC, Don AS.

Nat Commun. 2018 Aug 21;9(1):3165. doi: 10.1038/s41467-018-05613-7.

9.

Protein hypoacylation induced by Sirt5 overexpression has minimal metabolic effect in mice.

Bentley NL, Fiveash CE, Osborne B, Quek LE, Ogura M, Inagaki N, Cooney GJ, Polly P, Montgomery MK, Turner N.

Biochem Biophys Res Commun. 2018 Sep 10;503(3):1349-1355. doi: 10.1016/j.bbrc.2018.07.047. Epub 2018 Jul 13.

PMID:
30017194
10.

Disrupted sphingolipid metabolism following acute clozapine and olanzapine administration.

Weston-Green K, Babic I, de Santis M, Pan B, Montgomery MK, Mitchell T, Huang XF, Nealon J.

J Biomed Sci. 2018 May 2;25(1):40. doi: 10.1186/s12929-018-0437-1.

11.

Perilipin 5 Deletion Unmasks an Endoplasmic Reticulum Stress-Fibroblast Growth Factor 21 Axis in Skeletal Muscle.

Montgomery MK, Mokhtar R, Bayliss J, Parkington HC, Suturin VM, Bruce CR, Watt MJ.

Diabetes. 2018 Apr;67(4):594-606. doi: 10.2337/db17-0923. Epub 2018 Jan 29.

12.

Association of muscle lipidomic profile with high-fat diet-induced insulin resistance across five mouse strains.

Montgomery MK, Brown SHJ, Mitchell TW, Coster ACF, Cooney GJ, Turner N.

Sci Rep. 2017 Oct 24;7(1):13914. doi: 10.1038/s41598-017-14214-1.

13.

Regulation of glucose homeostasis and insulin action by ceramide acyl-chain length: A beneficial role for very long-chain sphingolipid species.

Montgomery MK, Brown SH, Lim XY, Fiveash CE, Osborne B, Bentley NL, Braude JP, Mitchell TW, Coster AC, Don AS, Cooney GJ, Schmitz-Peiffer C, Turner N.

Biochim Biophys Acta. 2016 Nov;1861(11):1828-1839. doi: 10.1016/j.bbalip.2016.08.016. Epub 2016 Aug 31.

PMID:
27591968
14.

Perilipin 5 is dispensable for normal substrate metabolism and in the adaptation of skeletal muscle to exercise training.

Mohktar RA, Montgomery MK, Murphy RM, Watt MJ.

Am J Physiol Endocrinol Metab. 2016 Jul 1;311(1):E128-37. doi: 10.1152/ajpendo.00084.2016. Epub 2016 May 17.

15.

The role of mitochondrial sirtuins in health and disease.

Osborne B, Bentley NL, Montgomery MK, Turner N.

Free Radic Biol Med. 2016 Nov;100:164-174. doi: 10.1016/j.freeradbiomed.2016.04.197. Epub 2016 May 6. Review.

PMID:
27164052
16.

Disparate metabolic response to fructose feeding between different mouse strains.

Montgomery MK, Fiveash CE, Braude JP, Osborne B, Brown SH, Mitchell TW, Turner N.

Sci Rep. 2015 Dec 22;5:18474. doi: 10.1038/srep18474.

17.

Glucagon phosphorylates serine 552 of β-catenin leading to increased expression of cyclin D1 and c-Myc in the isolated rat liver.

Chowdhury MK, Montgomery MK, Morris MJ, Cognard E, Shepherd PR, Smith GC.

Arch Physiol Biochem. 2015;121(3):88-96. doi: 10.3109/13813455.2015.1048693. Epub 2015 Jul 1.

PMID:
26135564
18.

Inhibitor of differentiation proteins protect against oxidative stress by regulating the antioxidant-mitochondrial response in mouse beta cells.

Bensellam M, Montgomery MK, Luzuriaga J, Chan JY, Laybutt DR.

Diabetologia. 2015 Apr;58(4):758-70. doi: 10.1007/s00125-015-3503-1. Epub 2015 Jan 31.

PMID:
25636209
19.

Mitochondrial dysfunction and insulin resistance: an update.

Montgomery MK, Turner N.

Endocr Connect. 2015 Mar;4(1):R1-R15. doi: 10.1530/EC-14-0092. Epub 2014 Nov 10. Review.

20.

PPARα-independent actions of omega-3 PUFAs contribute to their beneficial effects on adiposity and glucose homeostasis.

Liu M, Montgomery MK, Fiveash CE, Osborne B, Cooney GJ, Bell-Anderson K, Turner N.

Sci Rep. 2014 Jul 2;4:5538. doi: 10.1038/srep05538.

21.

Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging.

Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, Mercken EM, Palmeira CM, de Cabo R, Rolo AP, Turner N, Bell EL, Sinclair DA.

Cell. 2013 Dec 19;155(7):1624-38. doi: 10.1016/j.cell.2013.11.037.

22.

Contrasting metabolic effects of medium- versus long-chain fatty acids in skeletal muscle.

Montgomery MK, Osborne B, Brown SH, Small L, Mitchell TW, Cooney GJ, Turner N.

J Lipid Res. 2013 Dec;54(12):3322-33. doi: 10.1194/jlr.M040451. Epub 2013 Sep 27.

23.

Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding.

Montgomery MK, Hallahan NL, Brown SH, Liu M, Mitchell TW, Cooney GJ, Turner N.

Diabetologia. 2013 May;56(5):1129-39. doi: 10.1007/s00125-013-2846-8. Epub 2013 Feb 20.

PMID:
23423668
24.

Does the oxidative stress theory of aging explain longevity differences in birds? II. Antioxidant systems and oxidative damage.

Montgomery MK, Buttemer WA, Hulbert AJ.

Exp Gerontol. 2012 Mar;47(3):211-22. doi: 10.1016/j.exger.2011.11.014. Epub 2012 Jan 2.

PMID:
22230489
25.

Does the oxidative stress theory of aging explain longevity differences in birds? I. Mitochondrial ROS production.

Montgomery MK, Hulbert AJ, Buttemer WA.

Exp Gerontol. 2012 Mar;47(3):203-10. doi: 10.1016/j.exger.2011.11.006. Epub 2011 Nov 21.

PMID:
22123429
26.

The long life of birds: the rat-pigeon comparison revisited.

Montgomery MK, Hulbert AJ, Buttemer WA.

PLoS One. 2011;6(8):e24138. doi: 10.1371/journal.pone.0024138. Epub 2011 Aug 31. Erratum in: PLoS One. 2011;6(11). doi: 10.1371/annotation/cba5e1ce-429f-4b46-8499-d56a55a944dc.

27.

Metabolic rate and membrane fatty acid composition in birds: a comparison between long-living parrots and short-living fowl.

Montgomery MK, Hulbert AJ, Buttemer WA.

J Comp Physiol B. 2012 Jan;182(1):127-37. doi: 10.1007/s00360-011-0603-1. Epub 2011 Jul 16.

PMID:
21766191
28.

RNA interference: unraveling a mystery.

Montgomery MK.

Nat Struct Mol Biol. 2006 Dec;13(12):1039-41.

PMID:
17146455
29.

RNA interference: historical overview and significance.

Montgomery MK.

Methods Mol Biol. 2004;265:3-21. Review.

PMID:
15103066
30.

The use of double-stranded RNA to knock down specific gene activity.

Montgomery MK.

Methods Mol Biol. 2004;260:129-44.

PMID:
15020807
31.
32.

RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans.

Montgomery MK, Xu S, Fire A.

Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15502-7.

33.

Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression.

Montgomery MK, Fire A.

Trends Genet. 1998 Jul;14(7):255-8. Review. No abstract available.

PMID:
9676523
34.

Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC.

Nature. 1998 Feb 19;391(6669):806-11.

PMID:
9486653
35.
36.

An inductive interaction in 4-cell stage C. elegans embryos involves APX-1 expression in the signalling cell.

Mickey KM, Mello CC, Montgomery MK, Fire A, Priess JR.

Development. 1996 Jun;122(6):1791-8.

37.
38.

Enhanced Production of ALDH-Like Protein in the Bacterial Light Organ of the Sepiolid Squid Euprymna scolopes.

Weis VM, Montgomery MK, McFall-Ngai MJ.

Biol Bull. 1993 Jun;184(3):309-321. doi: 10.2307/1542449.

PMID:
29300544
39.

Embryonic Development of the Light Organ of the Sepiolid Squid Euprymna scolopes Berry.

Montgomery MK, McFall-Ngai M.

Biol Bull. 1993 Jun;184(3):296-308. doi: 10.2307/1542448.

PMID:
29300543
41.

The Anatomy and Morphology of the Adult Bacterial Light Organ of Euprymna scolopes Berry (Cephalopoda:Sepiolidae).

McFall-Ngai M, Montgomery MK.

Biol Bull. 1990 Dec;179(3):332-339. doi: 10.2307/1542325.

PMID:
29314961
42.

Aging and ovarian function in the white-footed mouse (Peromyscus leucopus) with specific reference to the development of preovulatory follicles.

Peluso JJ, Montgomery MK, Steger RW, Meites J, Sacher G.

Exp Aging Res. 1980 Aug;6(4):317-28.

PMID:
7191810

Supplemental Content

Loading ...
Support Center