Format

Send to

Choose Destination
Neuron. 2019 Aug 7;103(3):473-488.e6. doi: 10.1016/j.neuron.2019.05.027. Epub 2019 Jun 12.

A VTA GABAergic Neural Circuit Mediates Visually Evoked Innate Defensive Responses.

Author information

1
Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
2
Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Wuhan 430071, China.
3
Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
4
School of Life Sciences, University of Science and Technology of China, Hefei, China.
5
McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
6
Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Wuhan 430071, China. Electronic address: fuqiang.xu@wipm.ac.cn.
7
Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of the Chinese Academy of Sciences, Beijing 100049, China. Electronic address: lp.wang@siat.ac.cn.

Abstract

Innate defensive responses are essential for animal survival and are conserved across species. The ventral tegmental area (VTA) plays important roles in learned appetitive and aversive behaviors, but whether it plays a role in mediating or modulating innate defensive responses is currently unknown. We report that VTAGABA+ neurons respond to a looming stimulus. Inhibition of VTAGABA+ neurons reduced looming-evoked defensive flight behavior, and photoactivation of these neurons resulted in defense-like flight behavior. Using viral tracing and electrophysiological recordings, we show that VTAGABA+ neurons receive direct excitatory inputs from the superior colliculus (SC). Furthermore, we show that glutamatergic SC-VTA projections synapse onto VTAGABA+ neurons that project to the central nucleus of the amygdala (CeA) and that the CeA is involved in mediating the defensive behavior. Our findings demonstrate that aerial threat-related visual information is relayed to VTAGABA+ neurons mediating innate behavioral responses, suggesting a more general role of the VTA.

KEYWORDS:

GABAergic neurons; defensive responses; innate fear; looming; superior colliculus; ventral tegmental area

PMID:
31202540
DOI:
10.1016/j.neuron.2019.05.027
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center