Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 84

1.

Attenuated apoptotic BAX expression as a xenobiotic reporter in Saccharomyces cerevisiae.

Keniya MV, Monk BC.

FEMS Yeast Res. 2019 Aug 1;19(5). pii: foz048. doi: 10.1093/femsyr/foz048.

PMID:
31291458
2.

Fungal Lanosterol 14α-demethylase: A target for next-generation antifungal design.

Monk BC, Sagatova AA, Hosseini P, Ruma YN, Wilson RK, Keniya MV.

Biochim Biophys Acta Proteins Proteom. 2019 Mar 6. pii: S1570-9639(19)30044-5. doi: 10.1016/j.bbapap.2019.02.008. [Epub ahead of print] Review.

PMID:
30851431
3.

Azole Resistance Reduces Susceptibility to the Tetrazole Antifungal VT-1161.

Monk BC, Keniya MV, Sabherwal M, Wilson RK, Graham DO, Hassan HF, Chen D, Tyndall JDA.

Antimicrob Agents Chemother. 2018 Dec 21;63(1). pii: e02114-18. doi: 10.1128/AAC.02114-18. Print 2019 Jan.

4.

Crystal Structures of Full-Length Lanosterol 14α-Demethylases of Prominent Fungal Pathogens Candida albicans and Candida glabrata Provide Tools for Antifungal Discovery.

Keniya MV, Sabherwal M, Wilson RK, Woods MA, Sagatova AA, Tyndall JDA, Monk BC.

Antimicrob Agents Chemother. 2018 Oct 24;62(11). pii: e01134-18. doi: 10.1128/AAC.01134-18. Print 2018 Nov.

5.

Heterologous Expression of Full-Length Lanosterol 14α-Demethylases of Prominent Fungal Pathogens Candida albicans and Candida glabrata Provides Tools for Antifungal Discovery.

Keniya MV, Ruma YN, Tyndall JDA, Monk BC.

Antimicrob Agents Chemother. 2018 Oct 24;62(11). pii: e01131-18. doi: 10.1128/AAC.01131-18. Print 2018 Nov.

6.

Impact of Homologous Resistance Mutations from Pathogenic Yeast on Saccharomyces cerevisiae Lanosterol 14α-Demethylase.

Sagatova AA, Keniya MV, Tyndall JDA, Monk BC.

Antimicrob Agents Chemother. 2018 Feb 23;62(3). pii: e02242-17. doi: 10.1128/AAC.02242-17. Print 2018 Mar.

7.

Intrinsic short-tailed azole resistance in mucormycetes is due to an evolutionary conserved aminoacid substitution of the lanosterol 14α-demethylase.

Caramalho R, Tyndall JDA, Monk BC, Larentis T, Lass-Flörl C, Lackner M.

Sci Rep. 2017 Nov 21;7(1):15898. doi: 10.1038/s41598-017-16123-9.

8.

Structural and Functional Elucidation of Yeast Lanosterol 14α-Demethylase in Complex with Agrochemical Antifungals.

Tyndall JD, Sabherwal M, Sagatova AA, Keniya MV, Negroni J, Wilson RK, Woods MA, Tietjen K, Monk BC.

PLoS One. 2016 Dec 1;11(12):e0167485. doi: 10.1371/journal.pone.0167485. eCollection 2016.

9.

Sir John Walsh Research Institute Research Day 2014.

Monk BC.

N Z Dent J. 2016 Dec;112(4):125-130. No abstract available.

PMID:
29694759
10.

Targeting efflux pumps to overcome antifungal drug resistance.

Holmes AR, Cardno TS, Strouse JJ, Ivnitski-Steele I, Keniya MV, Lackovic K, Monk BC, Sklar LA, Cannon RD.

Future Med Chem. 2016 Aug;8(12):1485-501. doi: 10.4155/fmc-2016-0050. Epub 2016 Jul 27. Review.

11.

Erratum: Newly identified motifs in Candida albicans Cdr1 protein nucleotide binding domains are pleiotropic drug resistance subfamily-specific and functionally asymmetric.

Rawal MK, Banerjee A, Shah AH, Khan MF, Sen S, Saxena AK, Monk BC, Cannon RD, Bhatnagar R, Mondal AK, Prasad R.

Sci Rep. 2016 Jul 25;6:30221. doi: 10.1038/srep30221. No abstract available.

12.

Newly identified motifs in Candida albicans Cdr1 protein nucleotide binding domains are pleiotropic drug resistance subfamily-specific and functionally asymmetric.

Rawal MK, Banerjee A, Shah AH, Khan MF, Sen S, Saxena AK, Monk BC, Cannon RD, Bhatnagar R, Mondal AK, Prasad R.

Sci Rep. 2016 Jun 2;6:27132. doi: 10.1038/srep27132. Erratum in: Sci Rep. 2016 Jul 25;6:30221.

13.

Triazole resistance mediated by mutations of a conserved active site tyrosine in fungal lanosterol 14α-demethylase.

Sagatova AA, Keniya MV, Wilson RK, Sabherwal M, Tyndall JD, Monk BC.

Sci Rep. 2016 May 18;6:26213. doi: 10.1038/srep26213.

14.

Structural Insights into Binding of the Antifungal Drug Fluconazole to Saccharomyces cerevisiae Lanosterol 14α-Demethylase.

Sagatova AA, Keniya MV, Wilson RK, Monk BC, Tyndall JD.

Antimicrob Agents Chemother. 2015 Aug;59(8):4982-9. doi: 10.1128/AAC.00925-15. Epub 2015 Jun 8.

15.

Inhibitors of the Candida albicans Major Facilitator Superfamily Transporter Mdr1p Responsible for Fluconazole Resistance.

Keniya MV, Fleischer E, Klinger A, Cannon RD, Monk BC.

PLoS One. 2015 May 7;10(5):e0126350. doi: 10.1371/journal.pone.0126350. eCollection 2015.

16.

Characterisation of the DNA gyrase from the thermophilic eubacterium Thermus thermophilus.

Aung HL, Samaranayaka CU, Enright R, Beggs KT, Monk BC.

Protein Expr Purif. 2015 Mar;107:62-7. doi: 10.1016/j.pep.2014.11.009. Epub 2014 Nov 21.

PMID:
25462810
17.

Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer.

Monk BC, Tomasiak TM, Keniya MV, Huschmann FU, Tyndall JD, O'Connell JD 3rd, Cannon RD, McDonald JG, Rodriguez A, Finer-Moore JS, Stroud RM.

Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3865-70. doi: 10.1073/pnas.1324245111. Epub 2014 Feb 3.

18.

Transporters: A yeast ABC interactome primer.

Monk BC.

Nat Chem Biol. 2013 Sep;9(9):531-3. doi: 10.1038/nchembio.1317. No abstract available.

PMID:
23959129
19.

Catalysis product captured in lumazine synthase from the fungal pathogen Candida glabrata.

Shankar M, Wilbanks SM, Nakatani Y, Monk BC, Tyndall JD.

Acta Crystallogr D Biol Crystallogr. 2013 Aug;69(Pt 8):1580-6. doi: 10.1107/S0907444913010949. Epub 2013 Jul 20.

PMID:
23897480
20.

Insight into pleiotropic drug resistance ATP-binding cassette pump drug transport through mutagenesis of Cdr1p transmembrane domains.

Rawal MK, Khan MF, Kapoor K, Goyal N, Sen S, Saxena AK, Lynn AM, Tyndall JD, Monk BC, Cannon RD, Komath SS, Prasad R.

J Biol Chem. 2013 Aug 23;288(34):24480-93. doi: 10.1074/jbc.M113.488353. Epub 2013 Jul 3.

21.

[Fe₂L₃]⁴⁺ cylinders derived from bis(bidentate) 2-pyridyl-1,2,3-triazole "click" ligands: synthesis, structures and exploration of biological activity.

Vellas SK, Lewis JE, Shankar M, Sagatova A, Tyndall JD, Monk BC, Fitchett CM, Hanton LR, Crowley JD.

Molecules. 2013 May 29;18(6):6383-407. doi: 10.3390/molecules18066383.

22.

Heterologous expression of Candida albicans Pma1p in Saccharomyces cerevisiae.

Keniya MV, Cannon RD, Nguyễn Â, Tyndall JD, Monk BC.

FEMS Yeast Res. 2013 May;13(3):302-11. doi: 10.1111/1567-1364.12035. Epub 2013 Mar 15.

23.

Specific interactions between the Candida albicans ABC transporter Cdr1p ectodomain and a D-octapeptide derivative inhibitor.

Niimi K, Harding DR, Holmes AR, Lamping E, Niimi M, Tyndall JD, Cannon RD, Monk BC.

Mol Microbiol. 2012 Aug;85(4):747-67. doi: 10.1111/j.1365-2958.2012.08140.x. Epub 2012 Jul 13.

24.

Reconstitution of high-level micafungin resistance detected in a clinical isolate of Candida glabrata identifies functional homozygosity in glucan synthase gene expression.

Niimi K, Woods MA, Maki K, Nakayama H, Hatakenaka K, Chibana H, Ikeda F, Ueno K, Niimi M, Cannon RD, Monk BC.

J Antimicrob Chemother. 2012 Jul;67(7):1666-76. doi: 10.1093/jac/dks112. Epub 2012 Apr 18.

PMID:
22514266
25.

A D-octapeptide drug efflux pump inhibitor acts synergistically with azoles in a murine oral candidiasis infection model.

Hayama K, Ishibashi H, Ishijima SA, Niimi K, Tansho S, Ono Y, Monk BC, Holmes AR, Harding DR, Cannon RD, Abe S.

FEMS Microbiol Lett. 2012 Mar;328(2):130-7. doi: 10.1111/j.1574-6968.2011.02490.x. Epub 2012 Jan 16.

26.

The monoamine oxidase A inhibitor clorgyline is a broad-spectrum inhibitor of fungal ABC and MFS transporter efflux pump activities which reverses the azole resistance of Candida albicans and Candida glabrata clinical isolates.

Holmes AR, Keniya MV, Ivnitski-Steele I, Monk BC, Lamping E, Sklar LA, Cannon RD.

Antimicrob Agents Chemother. 2012 Mar;56(3):1508-15. doi: 10.1128/AAC.05706-11. Epub 2011 Dec 27.

27.

Chimeras of Candida albicans Cdr1p and Cdr2p reveal features of pleiotropic drug resistance transporter structure and function.

Tanabe K, Lamping E, Nagi M, Okawada A, Holmes AR, Miyazaki Y, Cannon RD, Monk BC, Niimi M.

Mol Microbiol. 2011 Oct;82(2):416-33. doi: 10.1111/j.1365-2958.2011.07820.x. Epub 2011 Sep 19.

28.

Protein content of molar-incisor hypomineralisation enamel.

Farah RA, Monk BC, Swain MV, Drummond BK.

J Dent. 2010 Jul;38(7):591-6. doi: 10.1016/j.jdent.2010.04.012. Epub 2010 May 4.

PMID:
20447437
29.

Clinically significant micafungin resistance in Candida albicans involves modification of a glucan synthase catalytic subunit GSC1 (FKS1) allele followed by loss of heterozygosity.

Niimi K, Monk BC, Hirai A, Hatakenaka K, Umeyama T, Lamping E, Maki K, Tanabe K, Kamimura T, Ikeda F, Uehara Y, Kano R, Hasegawa A, Cannon RD, Niimi M.

J Antimicrob Chemother. 2010 May;65(5):842-52. doi: 10.1093/jac/dkq073. Epub 2010 Mar 16.

PMID:
20233776
30.

Fungal PDR transporters: Phylogeny, topology, motifs and function.

Lamping E, Baret PV, Holmes AR, Monk BC, Goffeau A, Cannon RD.

Fungal Genet Biol. 2010 Feb;47(2):127-42. doi: 10.1016/j.fgb.2009.10.007. Epub 2009 Oct 24. Review.

31.

Identification of Nile red as a fluorescent substrate of the Candida albicans ATP-binding cassette transporters Cdr1p and Cdr2p and the major facilitator superfamily transporter Mdr1p.

Ivnitski-Steele I, Holmes AR, Lamping E, Monk BC, Cannon RD, Sklar LA.

Anal Biochem. 2009 Nov 1;394(1):87-91. doi: 10.1016/j.ab.2009.07.001. Epub 2009 Jul 3.

32.

Efflux-mediated antifungal drug resistance.

Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, Keniya MV, Tanabe K, Niimi M, Goffeau A, Monk BC.

Clin Microbiol Rev. 2009 Apr;22(2):291-321, Table of Contents. doi: 10.1128/CMR.00051-08. Review.

33.

ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates.

Holmes AR, Lin YH, Niimi K, Lamping E, Keniya M, Niimi M, Tanabe K, Monk BC, Cannon RD.

Antimicrob Agents Chemother. 2008 Nov;52(11):3851-62. doi: 10.1128/AAC.00463-08. Epub 2008 Aug 18.

34.

Outwitting multidrug resistance to antifungals.

Monk BC, Goffeau A.

Science. 2008 Jul 18;321(5887):367-9. doi: 10.1126/science.1159746.

PMID:
18635793
35.

Candida albicans drug resistance another way to cope with stress.

Cannon RD, Lamping E, Holmes AR, Niimi K, Tanabe K, Niimi M, Monk BC.

Microbiology. 2007 Oct;153(Pt 10):3211-7. Review.

PMID:
17906120
36.

Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in Saccharomyces cerevisiae.

Lamping E, Monk BC, Niimi K, Holmes AR, Tsao S, Tanabe K, Niimi M, Uehara Y, Cannon RD.

Eukaryot Cell. 2007 Jul;6(7):1150-65. Epub 2007 May 18.

37.

Amino acid residues affecting drug pump function in Candida albicans--C. albicans drug pump function.

Holmes AR, Tsao S, Lamping E, Niimi K, Monk BC, Tanabe K, Niimi M, Cannon RD.

Nihon Ishinkin Gakkai Zasshi. 2006;47(4):275-81. Review.

38.

Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2.

Holmes AR, Tsao S, Ong SW, Lamping E, Niimi K, Monk BC, Niimi M, Kaneko A, Holland BR, Schmid J, Cannon RD.

Mol Microbiol. 2006 Oct;62(1):170-86. Epub 2006 Aug 30.

39.

Overexpression of Candida albicans CDR1, CDR2, or MDR1 does not produce significant changes in echinocandin susceptibility.

Niimi K, Maki K, Ikeda F, Holmes AR, Lamping E, Niimi M, Monk BC, Cannon RD.

Antimicrob Agents Chemother. 2006 Apr;50(4):1148-55.

40.

[ABC transporters of pathogenic fungi: recent advances in functional analyses].

Niimi M, Tanabe K, Wada S, Yamazaki A, Uehara Y, Niimi K, Lamping E, Holmes AR, Monk BC, Cannon RD.

Nihon Ishinkin Gakkai Zasshi. 2005;46(4):249-60. Review. Japanese.

41.

Characterization of the Saccharomyces cerevisiae sec6-4 mutation and tools to create S. cerevisiae strains containing the sec6-4 allele.

Lamping E, Tanabe K, Niimi M, Uehara Y, Monk BC, Cannon RD.

Gene. 2005 Nov 21;361:57-66. Epub 2005 Sep 26.

PMID:
16185821
42.
43.

Functional analysis of fungal drug efflux transporters by heterologous expression in Saccharomyces cerevisiae.

Niimi M, Wada S, Tanabe K, Kaneko A, Takano Y, Umeyama T, Hanaoka N, Uehara Y, Lamping E, Niimi K, Tsao S, Holmes AR, Monk BC, Cannon RD.

Jpn J Infect Dis. 2005 Feb;58(1):1-7. Review.

44.

Surface-active fungicidal D-peptide inhibitors of the plasma membrane proton pump that block azole resistance.

Monk BC, Niimi K, Lin S, Knight A, Kardos TB, Cannon RD, Parshot R, King A, Lun D, Harding DR.

Antimicrob Agents Chemother. 2005 Jan;49(1):57-70.

45.

Morphotypic conversion in Listeria monocytogenes biofilm formation: biological significance of rough colony isolates.

Monk IR, Cook GM, Monk BC, Bremer PJ.

Appl Environ Microbiol. 2004 Nov;70(11):6686-94.

46.

Phosphorylation of candida glabrata ATP-binding cassette transporter Cdr1p regulates drug efflux activity and ATPase stability.

Wada S, Tanabe K, Yamazaki A, Niimi M, Uehara Y, Niimi K, Lamping E, Cannon RD, Monk BC.

J Biol Chem. 2005 Jan 7;280(1):94-103. Epub 2004 Oct 21.

47.

Tandem affinity purification of the Candida albicans septin protein complex.

Kaneko A, Umeyama T, Hanaoka N, Monk BC, Uehara Y, Niimi M.

Yeast. 2004 Sep;21(12):1025-33.

48.

Chemosensitization of fluconazole resistance in Saccharomyces cerevisiae and pathogenic fungi by a D-octapeptide derivative.

Niimi K, Harding DR, Parshot R, King A, Lun DJ, Decottignies A, Niimi M, Lin S, Cannon RD, Goffeau A, Monk BC.

Antimicrob Agents Chemother. 2004 Apr;48(4):1256-71.

49.

Genomic pathways to antifungal discovery.

Monk BC, Cannon RD.

Curr Drug Targets Infect Disord. 2002 Dec;2(4):309-29. Review.

PMID:
12570738
50.

Identification of two proteins induced by exposure of the pathogenic fungus Candida glabrata to fluconazole.

Niimi M, Nagai Y, Niimi K, Wada Si, Cannon RD, Uehara Y, Monk BC.

J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Dec 25;782(1-2):245-52.

PMID:
12458010

Supplemental Content

Support Center