Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 47

1.

Yielding to the image: How phenotyping reproductive growth can assist crop improvement and production.

Dreccer MF, Molero G, Rivera-Amado C, John-Bejai C, Wilson Z.

Plant Sci. 2019 May;282:73-82. doi: 10.1016/j.plantsci.2018.06.008. Epub 2018 Jun 30.

PMID:
31003613
2.

Safety and Therapeutic Profile of a GnRH-Based Vaccine Candidate Directed to Prostate Cancer. A 10-Year Follow-Up of Patients Vaccinated With Heberprovac.

Junco JA, Rodríguez R, Fuentes F, Baladrón I, Castro MD, Calzada L, Valenzuela C, Bover E, Pimentel E, Basulto R, Arteaga N, Cid-Arregui A, Sariol F, González L, Porres-Fong L, Medina M, Rodríguez A, Garay AH, Reyes O, López M, de Quesada L, Alvarez A, Martínez C, Marrero M, Molero G, Guerra A, Rosales P, Capote C, Acosta S, Vela I, Arzuaga L, Campal A, Ruiz E, Rubio E, Cedeño P, Sánchez MC, Cardoso P, Morán R, Fernández Y, Campos M, Touduri H, Bacardi D, Feria I, Ramirez A, Cosme K, Saura PL, Quintana M, Muzio V, Bringas R, Ayala M, Mendoza M, Fernández LE, Carr A, Herrera L, Guillén G.

Front Oncol. 2019 Feb 25;9:49. doi: 10.3389/fonc.2019.00049. eCollection 2019.

3.

Elucidating the genetic basis of biomass accumulation and radiation use efficiency in spring wheat and its role in yield potential.

Molero G, Joynson R, Pinera-Chavez FJ, Gardiner LJ, Rivera-Amado C, Hall A, Reynolds MP.

Plant Biotechnol J. 2019 Jul;17(7):1276-1288. doi: 10.1111/pbi.13052. Epub 2019 Jan 15.

4.

Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat.

Silva-Perez V, Molero G, Serbin SP, Condon AG, Reynolds MP, Furbank RT, Evans JR.

J Exp Bot. 2018 Jan 23;69(3):483-496. doi: 10.1093/jxb/erx421.

5.

Correction to: Strategic crossing of biomass and harvest index-source and sink-achieves genetic gains in wheat.

Reynolds MP, Pask AJD, Hoppitt WJE, Sonder K, Sukumaran S, Molero G, Pierre CS, Payne T, Singh RP, Braun HJ, Gonzalez FG, Terrile II, Barma NCD, Hakim A, He Z, Fan Z, Novoselovic D, Maghraby M, Gad KIM, Galal EG, Hagras A, Mohamed MM, Morad AFA, Kumar U, Singh GP, Naik R, Kalappanavar IK, Biradar S, Sai Prasad SV, Chatrath R, Sharma I, Panchabhai K, Sohu VS, Mavi GS, Mishra VK, Balasubramaniam A, Jalal-Kamali MR, Khodarahmi M, Dastfal M, Tabib-Ghaffari SM, Jafarby J, Nikzad AR, Moghaddam HA, Ghojogh H, Mehraban A, Solís-Moya E, Camacho-Casas MA, Figueroa-López P, Ireta-Moreno J, Alvarado-Padilla JI, Borbón-Gracia A, Torres A, Quiche YN, Upadhyay SR, Pandey D, Imtiaz M, Rehman MU, Hussain M, Hussain M, Ud-Din R, Qamar M, Sohail M, Mujahid MY, Ahmad G, Khan AJ, Sial MA, Mustatea P, von Well E, Ncala M, de Groot S, Hussein AHA, Tahir ISA, Idris AAM, Elamein HMM, Manes Y, Joshi AK.

Euphytica. 2018;214(1):9. doi: 10.1007/s10681-017-2086-y. Epub 2017 Dec 14.

6.

Variation in developmental patterns among elite wheat lines and relationships with yield, yield components and spike fertility.

Gonzalez-Navarro OE, Griffiths S, Molero G, Reynolds MP, Slafer GA.

Field Crops Res. 2016 Sep;196:294-304. doi: 10.1016/j.fcr.2016.07.019.

7.

Candida albicans Modifies the Protein Composition and Size Distribution of THP-1 Macrophage-Derived Extracellular Vesicles.

Reales-Calderón JA, Vaz C, Monteoliva L, Molero G, Gil C.

J Proteome Res. 2017 Jan 6;16(1):87-105. doi: 10.1021/acs.jproteome.6b00605. Epub 2016 Nov 2.

PMID:
27740763
8.

The fungal resistome: a risk and an opportunity for the development of novel antifungal therapies.

Reales-Calderón JA, Molero G, Gil C, Martínez JL.

Future Med Chem. 2016 Aug;8(12):1503-20. doi: 10.4155/fmc-2016-0051. Epub 2016 Aug 3. Review.

PMID:
27485839
9.

Apoptosis of Candida albicans during the Interaction with Murine Macrophages: Proteomics and Cell-Death Marker Monitoring.

Cabezón V, Vialás V, Gil-Bona A, Reales-Calderón JA, Martínez-Gomariz M, Gutiérrez-Blázquez D, Monteoliva L, Molero G, Ramsdale M, Gil C.

J Proteome Res. 2016 May 6;15(5):1418-34. doi: 10.1021/acs.jproteome.5b00913. Epub 2016 Apr 25.

PMID:
27048922
10.

Photosynthetic contribution of the ear to grain filling in wheat: a comparison of different methodologies for evaluation.

Sanchez-Bragado R, Molero G, Reynolds MP, Araus JL.

J Exp Bot. 2016 Apr;67(9):2787-98. doi: 10.1093/jxb/erw116. Epub 2016 Mar 24.

11.

Efficacy and toxicity evaluation of new amphotericin B micelle systems for brain fungal infections.

Moreno-Rodríguez AC, Torrado-Durán S, Molero G, García-Rodríguez JJ, Torrado-Santiago S.

Int J Pharm. 2015 Oct 15;494(1):17-22. doi: 10.1016/j.ijpharm.2015.08.003. Epub 2015 Aug 6.

PMID:
26256151
12.

A novel method for determination of the (15) N isotopic composition of Rubisco in wheat plants exposed to elevated atmospheric carbon dioxide.

Aranjuelo I, Molero G, Avice JC, Bourguignon J.

Physiol Plant. 2015 Feb;153(2):195-203. doi: 10.1111/ppl.12294. Epub 2014 Nov 5.

PMID:
25272325
13.

Relative contribution of shoot and ear photosynthesis to grain filling in wheat under good agronomical conditions assessed by differential organ δ13C.

Sanchez-Bragado R, Molero G, Reynolds MP, Araus JL.

J Exp Bot. 2014 Oct;65(18):5401-13. doi: 10.1093/jxb/eru298. Epub 2014 Jul 22.

14.

New amphotericin B-gamma cyclodextrin formulation for topical use with synergistic activity against diverse fungal species and Leishmania spp.

Ruiz HK, Serrano DR, Dea-Ayuela MA, Bilbao-Ramos PE, Bolás-Fernández F, Torrado JJ, Molero G.

Int J Pharm. 2014 Oct 1;473(1-2):148-57. doi: 10.1016/j.ijpharm.2014.07.004. Epub 2014 Jul 3.

PMID:
24998510
15.

Nodule performance within a changing environmental context.

Aranjuelo I, Arrese-Igor C, Molero G.

J Plant Physiol. 2014 Jul 15;171(12):1076-90. doi: 10.1016/j.jplph.2014.04.002. Epub 2014 Apr 15. Review.

PMID:
24974334
16.

Effect of shoot removal on remobilization of carbon and nitrogen during regrowth of nitrogen-fixing alfalfa.

Aranjuelo I, Molero G, Erice G, Aldasoro J, Arrese-Igor C, Nogués S.

Physiol Plant. 2015 Jan;153(1):91-104. doi: 10.1111/ppl.12222. Epub 2014 Jun 25.

17.

Proteomic characterization of human proinflammatory M1 and anti-inflammatory M2 macrophages and their response to Candida albicans.

Reales-Calderón JA, Aguilera-Montilla N, Corbí ÁL, Molero G, Gil C.

Proteomics. 2014 Jun;14(12):1503-18. doi: 10.1002/pmic.201300508. Epub 2014 May 22.

PMID:
24687989
18.

Candida albicans induces pro-inflammatory and anti-apoptotic signals in macrophages as revealed by quantitative proteomics and phosphoproteomics.

Reales-Calderón JA, Sylvester M, Strijbis K, Jensen ON, Nombela C, Molero G, Gil C.

J Proteomics. 2013 Oct 8;91:106-35. doi: 10.1016/j.jprot.2013.06.026. Epub 2013 Jul 5.

PMID:
23832136
19.

Concerted changes in N and C primary metabolism in alfalfa (Medicago sativa) under water restriction.

Aranjuelo I, Tcherkez G, Molero G, Gilard F, Avice JC, Nogués S.

J Exp Bot. 2013 Feb;64(4):885-97. doi: 10.1093/jxb/ers367.

20.

A novel formulation of solubilised amphotericin B designed for ophthalmic use.

Serrano DR, Ruiz-Saldaña HK, Molero G, Ballesteros MP, Torrado JJ.

Int J Pharm. 2012 Nov 1;437(1-2):80-2. doi: 10.1016/j.ijpharm.2012.07.065. Epub 2012 Aug 4.

PMID:
22890190
21.

Metabolic origin of δ15 N values in nitrogenous compounds from Brassica napus L. leaves.

Gauthier PP, Lamothe M, Mahé A, Molero G, Nogués S, Hodges M, Tcherkez G.

Plant Cell Environ. 2013 Jan;36(1):128-37. doi: 10.1111/j.1365-3040.2012.02561.x. Epub 2012 Jul 12.

22.

Sub-proteomic study on macrophage response to Candida albicans unravels new proteins involved in the host defense against the fungus.

Reales-Calderón JA, Martínez-Solano L, Martínez-Gomariz M, Nombela C, Molero G, Gil C.

J Proteomics. 2012 Aug 3;75(15):4734-46. doi: 10.1016/j.jprot.2012.01.037. Epub 2012 Feb 9.

PMID:
22342486
23.

Measurement of 13C and 15N isotope labeling by gas chromatography/combustion/isotope ratio mass spectrometry to study amino acid fluxes in a plant-microbe symbiotic association.

Molero G, Aranjuelo I, Teixidor P, Araus JL, Nogués S.

Rapid Commun Mass Spectrom. 2011 Mar 15;25(5):599-607. doi: 10.1002/rcm.4895.

PMID:
21290446
24.

In vivo virulence of commercial Saccharomyces cerevisiae strains with pathogenicity-associated phenotypical traits.

de Llanos R, Llopis S, Molero G, Querol A, Gil C, Fernández-Espinar MT.

Int J Food Microbiol. 2011 Jan 5;144(3):393-9. doi: 10.1016/j.ijfoodmicro.2010.10.025. Epub 2010 Oct 28.

PMID:
21081253
25.

Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.).

Aranjuelo I, Molero G, Erice G, Avice JC, Nogués S.

J Exp Bot. 2011 Jan;62(1):111-23. doi: 10.1093/jxb/erq249. Epub 2010 Aug 25.

26.

Gel and gel-free proteomics to identify Saccharomyces cerevisiae cell surface proteins.

Insenser MR, Hernáez ML, Nombela C, Molina M, Molero G, Gil C.

J Proteomics. 2010 Apr 18;73(6):1183-95. doi: 10.1016/j.jprot.2010.02.005. Epub 2010 Feb 20.

PMID:
20176154
27.

Proteomics of RAW 264.7 macrophages upon interaction with heat-inactivated Candida albicans cells unravel an anti-inflammatory response.

Martínez-Solano L, Reales-Calderón JA, Nombela C, Molero G, Gil C.

Proteomics. 2009 Jun;9(11):2995-3010. doi: 10.1002/pmic.200800016.

PMID:
19526544
28.

Water and nitrogen conditions affect the relationships of Delta13C and Delta18O to gas exchange and growth in durum wheat.

Cabrera-Bosquet L, Molero G, Nogués S, Araus JL.

J Exp Bot. 2009;60(6):1633-44. doi: 10.1093/jxb/erp028. Epub 2009 Feb 26.

29.

Efficacy of alternative dosing regimens of poly-aggregated amphotericin B.

Espada R, Valdespina S, Molero G, Dea MA, Ballesteros MP, Torrado JJ.

Int J Antimicrob Agents. 2008 Jul;32(1):55-61. doi: 10.1016/j.ijantimicag.2008.02.025. Epub 2008 Jun 4.

PMID:
18534826
30.

In vivo distribution and therapeutic efficacy of a novel amphotericin B poly-aggregated formulation.

Espada R, Valdespina S, Dea MA, Molero G, Ballesteros MP, Bolás F, Torrado JJ.

J Antimicrob Chemother. 2008 May;61(5):1125-31. doi: 10.1093/jac/dkn048. Epub 2008 Feb 19.

PMID:
18285313
31.

Differential protein expression of murine macrophages upon interaction with Candida albicans.

Martínez-Solano L, Nombela C, Molero G, Gil C.

Proteomics. 2006 Apr;6 Suppl 1:S133-44.

PMID:
16544287
32.

Proteomic analysis of detergent-resistant membranes from Candida albicans.

Insenser M, Nombela C, Molero G, Gil C.

Proteomics. 2006 Apr;6 Suppl 1:S74-81.

PMID:
16534748
33.

The importance of the phagocytes' innate response in resolution of the infection induced by a low virulent Candida albicans mutant.

Molero G, Guillén MV, Martínez-Solano L, Gil C, Pla J, Nombela C, Sánchez-Pérez M, Diez-Orejas R.

Scand J Immunol. 2005 Sep;62(3):224-33.

34.

PST1 and ECM33 encode two yeast cell surface GPI proteins important for cell wall integrity.

Pardo M, Monteoliva L, Vázquez P, Martínez R, Molero G, Nombela C, Gil C.

Microbiology. 2004 Dec;150(Pt 12):4157-70.

PMID:
15583168
35.

Low virulent strains of Candida albicans: unravelling the antigens for a future vaccine.

Fernández-Arenas E, Molero G, Nombela C, Diez-Orejas R, Gil C.

Proteomics. 2004 Oct;4(10):3007-20.

PMID:
15378749
37.

Contribution of the antibodies response induced by a low virulent Candida albicans strain in protection against systemic candidiasis.

Fernández-Arenas E, Molero G, Nombela C, Diez-Orejas R, Gil C.

Proteomics. 2004 Apr;4(4):1204-15. Erratum in: Proteomics. 2004 Aug;4(8):2513. Dosage error in article text.

PMID:
15049000
38.

Analysis of the serologic response to systemic Candida albicans infection in a murine model.

Pitarch A, Díez-Orejas R, Molero G, Pardo M, Sánchez M, Gil C, Nombela C.

Proteomics. 2001 Apr;1(4):550-9.

PMID:
11681208
39.

Two different NO-dependent mechanisms account for the low virulence of a non-mycelial morphological mutant of Candida albicans.

Diez-Orejas R, Molero G, Moro MA, Gil C, Nombela C, Sánchez-Pérez M.

Med Microbiol Immunol. 2001 Apr;189(3):153-60.

PMID:
11388613
40.

Candida albicans: genetics, dimorphism and pathogenicity.

Molero G, Díez-Orejas R, Navarro-García F, Monteoliva L, Pla J, Gil C, Sánchez-Pérez M, Nombela C.

Int Microbiol. 1998 Jun;1(2):95-106. Review.

PMID:
10943347
41.

Low virulence of a morphological Candida albicans mutant.

Diez-Orejas R, Molero G, Ríos-Serrano I, Vázquez A, Gil C, Nombela C, Sánchez-Pérez M.

FEMS Microbiol Lett. 1999 Jul 15;176(2):311-9.

42.

Candida albicans exoglucanase as a reporter gene in Schizosaccharomyces pombe.

Molero G, Cid VJ, Vivar C, Nombela C, Sánchez-Pérez M.

FEMS Microbiol Lett. 1999 Jun 1;175(1):143-8.

43.

Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans.

Alonso-Monge R, Navarro-García F, Molero G, Diez-Orejas R, Gustin M, Pla J, Sánchez M, Nombela C.

J Bacteriol. 1999 May;181(10):3058-68.

44.

Morphogenesis beyond cytokinetic arrest in Saccharomyces cerevisiae.

Jiménez J, Cid VJ, Cenamor R, Yuste M, Molero G, Nombela C, Sánchez M.

J Cell Biol. 1998 Dec 14;143(6):1617-34.

45.

Phenotypic characterization of a Candida albicans strain deficient in its major exoglucanase.

González MM, Díez-Orejas R, Molero G, Alvarez AM, Pla J, Nombela C, Sánchez-Pérez M.

Microbiology. 1997 Sep;143 ( Pt 9):3023-32.

PMID:
9308184
46.

Reduced virulence of Candida albicans MKC1 mutants: a role for mitogen-activated protein kinase in pathogenesis.

Diez-Orejas R, Molero G, Navarro-García F, Pla J, Nombela C, Sanchez-Pérez M.

Infect Immun. 1997 Feb;65(2):833-7.

47.

A cdc-like autolytic Saccharomyces cerevisiae mutant altered in budding site selection is complemented by SPO12, a sporulation gene.

Molero G, Yuste-Rojas M, Montesi A, Vázquez A, Nombela C, Sanchez M.

J Bacteriol. 1993 Oct;175(20):6562-70.

Supplemental Content

Loading ...
Support Center