Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 32

1.

Bivalent IAP antagonists, but not monovalent IAP antagonists, inhibit TNF-mediated NF-κB signaling by degrading TRAF2-associated cIAP1 in cancer cells.

Mitsuuchi Y, Benetatos CA, Deng Y, Haimowitz T, Beck SC, Arnone MR, Kapoor GS, Seipel ME, Chunduru SK, McKinlay MA, Begley CG, Condon SM.

Cell Death Discov. 2017 Jan 16;3:16046. doi: 10.1038/cddiscovery.2016.46. eCollection 2017.

2.

RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL.

Lawlor KE, Khan N, Mildenhall A, Gerlic M, Croker BA, D'Cruz AA, Hall C, Kaur Spall S, Anderton H, Masters SL, Rashidi M, Wicks IP, Alexander WS, Mitsuuchi Y, Benetatos CA, Condon SM, Wong WW, Silke J, Vaux DL, Vince JE.

Nat Commun. 2015 Feb 18;6:6282. doi: 10.1038/ncomms7282.

3.

Birinapant, a smac-mimetic with improved tolerability for the treatment of solid tumors and hematological malignancies.

Condon SM, Mitsuuchi Y, Deng Y, LaPorte MG, Rippin SR, Haimowitz T, Alexander MD, Kumar PT, Hendi MS, Lee YH, Benetatos CA, Yu G, Kapoor GS, Neiman E, Seipel ME, Burns JM, Graham MA, McKinlay MA, Li X, Wang J, Shi Y, Feltham R, Bettjeman B, Cumming MH, Vince JE, Khan N, Silke J, Day CL, Chunduru SK.

J Med Chem. 2014 May 8;57(9):3666-77. doi: 10.1021/jm500176w. Epub 2014 Apr 15.

PMID:
24684347
4.

Birinapant (TL32711), a bivalent SMAC mimetic, targets TRAF2-associated cIAPs, abrogates TNF-induced NF-κB activation, and is active in patient-derived xenograft models.

Benetatos CA, Mitsuuchi Y, Burns JM, Neiman EM, Condon SM, Yu G, Seipel ME, Kapoor GS, Laporte MG, Rippin SR, Deng Y, Hendi MS, Tirunahari PK, Lee YH, Haimowitz T, Alexander MD, Graham MA, Weng D, Shi Y, McKinlay MA, Chunduru SK.

Mol Cancer Ther. 2014 Apr;13(4):867-79. doi: 10.1158/1535-7163.MCT-13-0798. Epub 2014 Feb 21. Erratum in: Mol Cancer Ther. 2014 Sep;13(9):2246-7. Dosage error in article text.

5.

The novel SMAC mimetic birinapant exhibits potent activity against human melanoma cells.

Krepler C, Chunduru SK, Halloran MB, He X, Xiao M, Vultur A, Villanueva J, Mitsuuchi Y, Neiman EM, Benetatos C, Nathanson KL, Amaravadi RK, Pehamberger H, McKinlay M, Herlyn M.

Clin Cancer Res. 2013 Apr 1;19(7):1784-94. doi: 10.1158/1078-0432.CCR-12-2518. Epub 2013 Feb 12.

6.
7.

Frequent activation of AKT in non-small cell lung carcinomas and preneoplastic bronchial lesions.

Balsara BR, Pei J, Mitsuuchi Y, Page R, Klein-Szanto A, Wang H, Unger M, Testa JR.

Carcinogenesis. 2004 Nov;25(11):2053-9. Epub 2004 Jul 7.

PMID:
15240509
8.

Growth inhibition and induction of apoptosis in mesothelioma cells by selenium and dependence on selenoprotein SEP15 genotype.

Apostolou S, Klein JO, Mitsuuchi Y, Shetler JN, Poulikakos PI, Jhanwar SC, Kruger WD, Testa JR.

Oncogene. 2004 Jun 24;23(29):5032-40.

PMID:
15107826
9.

Protein kinase C promotes apoptosis in LNCaP prostate cancer cells through activation of p38 MAPK and inhibition of the Akt survival pathway.

Tanaka Y, Gavrielides MV, Mitsuuchi Y, Fujii T, Kazanietz MG.

J Biol Chem. 2003 Sep 5;278(36):33753-62. Epub 2003 Jun 24.

10.

Cytogenetics and molecular genetics of lung cancer.

Mitsuuchi Y, Testa JR.

Am J Med Genet. 2002 Oct 30;115(3):183-8. Review.

PMID:
12407699
11.

Activation of Akt2 Inhibits anoikis and apoptosis induced by myogenic differentiation.

Fujio Y, Mitsuuchi Y, Testa JR, Walsh K.

Cell Death Differ. 2001 Dec;8(12):1207-12.

12.

AKT activation up-regulates insulin-like growth factor I receptor expression and promotes invasiveness of human pancreatic cancer cells.

Tanno S, Tanno S, Mitsuuchi Y, Altomare DA, Xiao GH, Testa JR.

Cancer Res. 2001 Jan 15;61(2):589-93.

13.

Anti-apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways.

Xiao GH, Jeffers M, Bellacosa A, Mitsuuchi Y, Vande Woude GF, Testa JR.

Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):247-52.

14.

The phosphatidylinositol 3-kinase/AKT signal transduction pathway plays a critical role in the expression of p21WAF1/CIP1/SDI1 induced by cisplatin and paclitaxel.

Mitsuuchi Y, Johnson SW, Selvakumaran M, Williams SJ, Hamilton TC, Testa JR.

Cancer Res. 2000 Oct 1;60(19):5390-4.

15.
16.

Cell cycle withdrawal promotes myogenic induction of Akt, a positive modulator of myocyte survival.

Fujio Y, Guo K, Mano T, Mitsuuchi Y, Testa JR, Walsh K.

Mol Cell Biol. 1999 Jul;19(7):5073-82.

17.

Translocation and activation of AKT2 in response to stimulation by insulin.

Mitsuuchi Y, Johnson SW, Moonblatt S, Testa JR.

J Cell Biochem. 1998 Sep 15;70(4):433-41.

PMID:
9712142
18.

Akt2 mRNA is highly expressed in embryonic brown fat and the AKT2 kinase is activated by insulin.

Altomare DA, Lyons GE, Mitsuuchi Y, Cheng JQ, Testa JR.

Oncogene. 1998 May 7;16(18):2407-11.

19.

Inborn errors of aldosterone biosynthesis in humans.

Shizuta Y, Kawamoto T, Mitsuuchi Y, Miyahara K, Rösler A, Ulick S, Imura H.

Steroids. 1995 Jan;60(1):15-21.

PMID:
7792802
20.

A nonsense mutation (TGG [Trp116]-->TAG [Stop]) in CYP11B1 causes steroid 11 beta-hydroxylase deficiency.

Naiki Y, Kawamoto T, Mitsuuchi Y, Miyahara K, Toda K, Orii T, Imura H, Shizuta Y.

J Clin Endocrinol Metab. 1993 Dec;77(6):1677-82.

PMID:
7903314
21.

Congenitally defective aldosterone biosynthesis in humans: inactivation of the P-450C18 gene (CYP11B2) due to nucleotide deletion in CMO I deficient patients.

Mitsuuchi Y, Kawamoto T, Miyahara K, Ulick S, Morton DH, Naiki Y, Kuribayashi I, Toda K, Hara T, Orii T, et al.

Biochem Biophys Res Commun. 1993 Feb 15;190(3):864-9.

PMID:
8439335
22.

The chimeric gene linked to glucocorticoid-suppressible hyperaldosteronism encodes a fused P-450 protein possessing aldosterone synthase activity.

Miyahara K, Kawamoto T, Mitsuuchi Y, Toda K, Imura H, Gordon RD, Shizuta Y.

Biochem Biophys Res Commun. 1992 Dec 15;189(2):885-91.

PMID:
1472060
23.

Molecular genetic studies on the biosynthesis of aldosterone in humans.

Shizuta Y, Kawamoto T, Mitsuuchi Y, Toda K, Miyahara K, Ichikawa Y, Imura H, Ulick S.

J Steroid Biochem Mol Biol. 1992 Dec;43(8):981-7. doi: 10.1016/0960-0760(92)90326-E.

PMID:
22217843
24.

Role of steroid 11 beta-hydroxylase and steroid 18-hydroxylase in the biosynthesis of glucocorticoids and mineralocorticoids in humans.

Kawamoto T, Mitsuuchi Y, Toda K, Yokoyama Y, Miyahara K, Miura S, Ohnishi T, Ichikawa Y, Nakao K, Imura H, et al.

Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1458-62.

25.

Congenitally defective aldosterone biosynthesis in humans: the involvement of point mutations of the P-450C18 gene (CYP11B2) in CMO II deficient patients.

Mitsuuchi Y, Kawamoto T, Naiki Y, Miyahara K, Toda K, Kuribayashi I, Orii T, Yasuda K, Miura K, Nakao K, et al.

Biochem Biophys Res Commun. 1992 Jan 31;182(2):974-9. Erratum in: Biochem Biophys Res Commun 1992 May 15;184(3):1529-30.

PMID:
1346492
26.

Human poly(ADP-ribose) polymerase gene. Cloning of the promoter region.

Yokoyama Y, Kawamoto T, Mitsuuchi Y, Kurosaki T, Toda K, Ushiro H, Terashima M, Sumimoto H, Kuribayashi I, Yamamoto Y, et al.

Eur J Biochem. 1990 Dec 12;194(2):521-6.

27.

Cloning and expression of a cDNA for human cytochrome P-450aldo as related to primary aldosteronism.

Kawainoto T, Mitsuuchi Y, Ohnishi T, Ichikawa Y, Yokoyama Y, Sumimoto H, Toda K, Miyahara K, Kuribayashi I, Nakao K, et al.

Biochem Biophys Res Commun. 1990 Nov 30;173(1):309-16.

PMID:
2256920
28.

Structural and functional characterization of human aromatase P-450 gene.

Toda K, Terashima M, Kawamoto T, Sumimoto H, Yokoyama Y, Kuribayashi I, Mitsuuchi Y, Maeda T, Yamamoto Y, Sagara Y, et al.

Eur J Biochem. 1990 Oct 24;193(2):559-65.

29.

Cloning of cDNA and genomic DNA for human cytochrome P-45011 beta.

Kawamoto T, Mitsuuchi Y, Toda K, Miyahara K, Yokoyama Y, Nakao K, Hosoda K, Yamamoto Y, Imura H, Shizuta Y.

FEBS Lett. 1990 Sep 3;269(2):345-9.

30.

Alternative usage of different poly(A) addition signals for two major species of mRNA encoding human aromatase P-450.

Toda K, Terashima M, Mitsuuchi Y, Yamasaki Y, Yokoyama Y, Nojima S, Ushiro H, Maeda T, Yamamoto Y, Sagara Y, et al.

FEBS Lett. 1989 Apr 24;247(2):371-6.

31.

Primary structure of human poly(ADP-ribose) synthetase as deduced from cDNA sequence.

Kurosaki T, Ushiro H, Mitsuuchi Y, Suzuki S, Matsuda M, Matsuda Y, Katunuma N, Kangawa K, Matsuo H, Hirose T, et al.

J Biol Chem. 1987 Nov 25;262(33):15990-7.

32.

The domain structure and the function of poly(ADP-ribose) synthetase.

Shizuta Y, Kameshita I, Ushiro H, Matsuda M, Suzuki S, Mitsuuchi Y, Yokoyama Y, Kurosaki T.

Adv Enzyme Regul. 1986;25:377-84.

PMID:
3101408

Supplemental Content

Loading ...
Support Center