Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 45

1.

Effect of Acetic Acid and Lactic Acid at Low pH in Growth and Azole Resistance of Candida albicans and Candida glabrata.

Lourenço A, Pedro NA, Salazar SB, Mira NP.

Front Microbiol. 2019 Jan 8;9:3265. doi: 10.3389/fmicb.2018.03265. eCollection 2018.

2.

Genome Sequence of the Wine Yeast Saccharomycodes ludwigii UTAD17.

Tavares MJ, Güldener U, Esteves M, Mendes-Faia A, Mendes-Ferreira A, Mira NP.

Microbiol Resour Announc. 2018 Nov 8;7(18). pii: e01195-18. doi: 10.1128/MRA.01195-18. eCollection 2018 Nov.

3.

Genome sequence of the non-conventional wine yeast Hanseniaspora guilliermondii UTAD222 unveils relevant traits of this species and of the Hanseniaspora genus in the context of wine fermentation.

Seixas I, Barbosa C, Mendes-Faia A, Güldener U, Tenreiro R, Mendes-Ferreira A, Mira NP.

DNA Res. 2019 Feb 1;26(1):67-83. doi: 10.1093/dnares/dsy039.

PMID:
30462193
4.

A Transcriptomics Approach To Unveiling the Mechanisms of In Vitro Evolution towards Fluconazole Resistance of a Candida glabrata Clinical Isolate.

Cavalheiro M, Costa C, Silva-Dias A, Miranda IM, Wang C, Pais P, Pinto SN, Mil-Homens D, Sato-Okamoto M, Takahashi-Nakaguchi A, Silva RM, Mira NP, Fialho AM, Chibana H, Rodrigues AG, Butler G, Teixeira MC.

Antimicrob Agents Chemother. 2018 Dec 21;63(1). pii: e00995-18. doi: 10.1128/AAC.00995-18. Print 2019 Jan.

5.

Comparative genomic and transcriptomic analyses unveil novel features of azole resistance and adaptation to the human host in Candida glabrata.

Salazar SB, Wang C, Münsterkötter M, Okamoto M, Takahashi-Nakaguchi A, Chibana H, Lopes MM, Güldener U, Butler G, Mira NP.

FEMS Yeast Res. 2018 Feb 1;18(1). doi: 10.1093/femsyr/fox079.

PMID:
29087506
6.

Membrane Phosphoproteomics of Yeast Early Response to Acetic Acid: Role of Hrk1 Kinase and Lipid Biosynthetic Pathways, in Particular Sphingolipids.

Guerreiro JF, Mira NP, Santos AXS, Riezman H, Sá-Correia I.

Front Microbiol. 2017 Jul 12;8:1302. doi: 10.3389/fmicb.2017.01302. eCollection 2017.

7.

Ag(I) camphorimine complexes with antimicrobial activity towards clinically important bacteria and species of the Candida genus.

Cardoso JMS, Guerreiro SI, Lourenço A, Alves MM, Montemor MF, Mira NP, Leitão JH, Carvalho MFNN.

PLoS One. 2017 May 9;12(5):e0177355. doi: 10.1371/journal.pone.0177355. eCollection 2017.

8.
9.

Yeast response and tolerance to benzoic acid involves the Gcn4- and Stp1-regulated multidrug/multixenobiotic resistance transporter Tpo1.

Godinho CP, Mira NP, Cabrito TR, Teixeira MC, Alasoo K, Guerreiro JF, Sá-Correia I.

Appl Microbiol Biotechnol. 2017 Jun;101(12):5005-5018. doi: 10.1007/s00253-017-8277-6. Epub 2017 Apr 13.

10.

Mechanistic Insights Underlying Tolerance to Acetic Acid Stress in Vaginal Candida glabrata Clinical Isolates.

Cunha DV, Salazar SB, Lopes MM, Mira NP.

Front Microbiol. 2017 Feb 28;8:259. doi: 10.3389/fmicb.2017.00259. eCollection 2017.

11.

Genome Sequence of the Nonconventional Wine Yeast Hanseniaspora guilliermondii UTAD222.

Seixas I, Barbosa C, Salazar SB, Mendes-Faia A, Wang Y, Güldener U, Mendes-Ferreira A, Mira NP.

Genome Announc. 2017 Feb 2;5(5). pii: e01515-16. doi: 10.1128/genomeA.01515-16.

12.

The CgHaa1-Regulon Mediates Response and Tolerance to Acetic Acid Stress in the Human Pathogen Candida glabrata.

Bernardo RT, Cunha DV, Wang C, Pereira L, Silva S, Salazar SB, Schröder MS, Okamoto M, Takahashi-Nakaguchi A, Chibana H, Aoyama T, Sá-Correia I, Azeredo J, Butler G, Mira NP.

G3 (Bethesda). 2017 Jan 5;7(1):1-18. doi: 10.1534/g3.116.034660.

13.

The multidrug resistance transporters CgTpo1_1 and CgTpo1_2 play a role in virulence and biofilm formation in the human pathogen Candida glabrata.

Santos R, Costa C, Mil-Homens D, Romão D, de Carvalho CC, Pais P, Mira NP, Fialho AM, Teixeira MC.

Cell Microbiol. 2017 May;19(5). doi: 10.1111/cmi.12686. Epub 2017 Jan 3.

PMID:
27780306
14.

Search for genes responsible for the remarkably high acetic acid tolerance of a Zygosaccharomyces bailii-derived interspecies hybrid strain.

Palma M, Roque Fde C, Guerreiro JF, Mira NP, Queiroz L, Sá-Correia I.

BMC Genomics. 2015 Dec 16;16:1070. doi: 10.1186/s12864-015-2278-6.

15.

Genomic expression program of Saccharomyces cerevisiae along a mixed-culture wine fermentation with Hanseniaspora guilliermondii.

Barbosa C, Mendes-Faia A, Lage P, Mira NP, Mendes-Ferreira A.

Microb Cell Fact. 2015 Aug 28;14:124. doi: 10.1186/s12934-015-0318-1.

16.

Adaptation and tolerance of bacteria against acetic acid.

Trček J, Mira NP, Jarboe LR.

Appl Microbiol Biotechnol. 2015 Aug;99(15):6215-29. doi: 10.1007/s00253-015-6762-3. Epub 2015 Jul 5. Review.

PMID:
26142387
17.

Genome-wide screening of Saccharomyces cerevisiae genes required to foster tolerance towards industrial wheat straw hydrolysates.

Pereira FB, Teixeira MC, Mira NP, Sá-Correia I, Domingues L.

J Ind Microbiol Biotechnol. 2014 Dec;41(12):1753-61. doi: 10.1007/s10295-014-1519-z. Epub 2014 Oct 7.

PMID:
25287021
18.

Transmission line model analysis of transcription factors binding to oligoduplexes - differentiation of the effect of single nucleotide modifications.

Rodrigues RM, de-Carvalho J, Henriques SF, Mira NP, Sá-Correia I, Ferreira GN.

Analyst. 2014 Aug 21;139(16):3871-4. doi: 10.1039/c4an00709c.

PMID:
24955439
19.

Candida glabrata drug:H+ antiporter CgTpo3 (ORF CAGL0I10384g): role in azole drug resistance and polyamine homeostasis.

Costa C, Nunes J, Henriques A, Mira NP, Nakayama H, Chibana H, Teixeira MC.

J Antimicrob Chemother. 2014 Jul;69(7):1767-76. doi: 10.1093/jac/dku044. Epub 2014 Feb 26.

PMID:
24576949
20.

The genome sequence of the highly acetic acid-tolerant Zygosaccharomyces bailii-derived interspecies hybrid strain ISA1307, isolated from a sparkling wine plant.

Mira NP, Münsterkötter M, Dias-Valada F, Santos J, Palma M, Roque FC, Guerreiro JF, Rodrigues F, Sousa MJ, Leão C, Güldener U, Sá-Correia I.

DNA Res. 2014 Jun;21(3):299-313. doi: 10.1093/dnares/dst058. Epub 2014 Jan 21.

21.

Microbial mechanisms of tolerance to weak acid stress.

Mira NP, Teixeira MC.

Front Microbiol. 2013 Dec 30;4:416. doi: 10.3389/fmicb.2013.00416. eCollection 2013. No abstract available.

22.

Conformational and mechanical changes of DNA upon transcription factor binding detected by a QCM and transmission line model.

de-Carvalho J, Rodrigues RM, Tomé B, Henriques SF, Mira NP, Sá-Correia I, Ferreira GN.

Analyst. 2014 Apr 21;139(8):1847-55. doi: 10.1039/c3an01682j.

PMID:
24352369
23.

The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae.

Teixeira MC, Monteiro PT, Guerreiro JF, Gonçalves JP, Mira NP, dos Santos SC, Cabrito TR, Palma M, Costa C, Francisco AP, Madeira SC, Oliveira AL, Freitas AT, Sá-Correia I.

Nucleic Acids Res. 2014 Jan;42(Database issue):D161-6. doi: 10.1093/nar/gkt1015. Epub 2013 Oct 28.

24.

Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation.

Teixeira MC, Godinho CP, Cabrito TR, Mira NP, Sá-Correia I.

Microb Cell Fact. 2012 Jul 27;11:98. doi: 10.1186/1475-2859-11-98.

25.

Quantitative- and phospho-proteomic analysis of the yeast response to the tyrosine kinase inhibitor imatinib to pharmacoproteomics-guided drug line extension.

Dos Santos SC, Mira NP, Moreira AS, Sá-Correia I.

OMICS. 2012 Oct;16(10):537-51. doi: 10.1089/omi.2012.0012. Epub 2012 Jul 9.

26.

Adaptive response to acetic acid in the highly resistant yeast species Zygosaccharomyces bailii revealed by quantitative proteomics.

Guerreiro JF, Mira NP, Sá-Correia I.

Proteomics. 2012 Aug;12(14):2303-18. doi: 10.1002/pmic.201100457.

PMID:
22685079
27.

Genomic expression analysis reveals strategies of Burkholderia cenocepacia to adapt to cystic fibrosis patients' airways and antimicrobial therapy.

Mira NP, Madeira A, Moreira AS, Coutinho CP, Sá-Correia I.

PLoS One. 2011;6(12):e28831. doi: 10.1371/journal.pone.0028831. Epub 2011 Dec 21.

28.

Identification of candidate genes for yeast engineering to improve bioethanol production in very high gravity and lignocellulosic biomass industrial fermentations.

Pereira FB, Guimarães PM, Gomes DG, Mira NP, Teixeira MC, Sá-Correia I, Domingues L.

Biotechnol Biofuels. 2011 Dec 9;4(1):57. doi: 10.1186/1754-6834-4-57.

29.

Characterization of complex regulatory networks and identification of promoter regulatory elements in yeast: "in silico" and "wet-lab" approaches.

Mira NP, Teixeira MC, Sá-Correia I.

Methods Mol Biol. 2012;809:27-48. doi: 10.1007/978-1-61779-376-9_2.

PMID:
22113266
30.

TFRank: network-based prioritization of regulatory associations underlying transcriptional responses.

Gonçalves JP, Francisco AP, Mira NP, Teixeira MC, Sá-Correia I, Oliveira AL, Madeira SC.

Bioinformatics. 2011 Nov 15;27(22):3149-57. doi: 10.1093/bioinformatics/btr546. Epub 2011 Sep 29.

PMID:
21965816
31.

Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress.

Mira NP, Henriques SF, Keller G, Teixeira MC, Matos RG, Arraiano CM, Winge DR, Sá-Correia I.

Nucleic Acids Res. 2011 Sep 1;39(16):6896-907. doi: 10.1093/nar/gkr228. Epub 2011 May 17.

32.

Long-term colonization of the cystic fibrosis lung by Burkholderia cepacia complex bacteria: epidemiology, clonal variation, and genome-wide expression alterations.

Coutinho CP, Dos Santos SC, Madeira A, Mira NP, Moreira AS, Sá-Correia I.

Front Cell Infect Microbiol. 2011 Dec 2;1:12. doi: 10.3389/fcimb.2011.00012. eCollection 2011.

33.

A genome-wide perspective on the response and tolerance to food-relevant stresses in Saccharomyces cerevisiae.

Teixeira MC, Mira NP, Sá-Correia I.

Curr Opin Biotechnol. 2011 Apr;22(2):150-6. doi: 10.1016/j.copbio.2010.10.011. Epub 2010 Nov 16. Review.

PMID:
21087853
34.

Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid.

Mira NP, Palma M, Guerreiro JF, Sá-Correia I.

Microb Cell Fact. 2010 Oct 25;9:79. doi: 10.1186/1475-2859-9-79.

35.

YEASTRACT: providing a programmatic access to curated transcriptional regulatory associations in Saccharomyces cerevisiae through a web services interface.

Abdulrehman D, Monteiro PT, Teixeira MC, Mira NP, Lourenço AB, dos Santos SC, Cabrito TR, Francisco AP, Madeira SC, Aires RS, Oliveira AL, Sá-Correia I, Freitas AT.

Nucleic Acids Res. 2011 Jan;39(Database issue):D136-40. doi: 10.1093/nar/gkq964. Epub 2010 Oct 23.

36.

Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid.

Mira NP, Becker JD, Sá-Correia I.

OMICS. 2010 Oct;14(5):587-601. doi: 10.1089/omi.2010.0048.

37.

Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view.

Mira NP, Teixeira MC, Sá-Correia I.

OMICS. 2010 Oct;14(5):525-40. doi: 10.1089/omi.2010.0072. Review.

38.

Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol.

Teixeira MC, Raposo LR, Mira NP, Lourenço AB, Sá-Correia I.

Appl Environ Microbiol. 2009 Sep;75(18):5761-72. doi: 10.1128/AEM.00845-09. Epub 2009 Jul 24.

39.

The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids.

Mira NP, Lourenço AB, Fernandes AR, Becker JD, Sá-Correia I.

FEMS Yeast Res. 2009 Mar;9(2):202-16. doi: 10.1111/j.1567-1364.2008.00473.x.

40.

Drug:H+ antiporters in chemical stress response in yeast.

Sá-Correia I, dos Santos SC, Teixeira MC, Cabrito TR, Mira NP.

Trends Microbiol. 2009 Jan;17(1):22-31. doi: 10.1016/j.tim.2008.09.007. Epub 2008 Dec 4. Review.

PMID:
19062291
41.

YEASTRACT-DISCOVERER: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae.

Monteiro PT, Mendes ND, Teixeira MC, d'Orey S, Tenreiro S, Mira NP, Pais H, Francisco AP, Carvalho AM, Lourenço AB, Sá-Correia I, Oliveira AL, Freitas AT.

Nucleic Acids Res. 2008 Jan;36(Database issue):D132-6. Epub 2007 Nov 21.

42.
43.

Early transcriptional response of Saccharomyces cerevisiae to stress imposed by the herbicide 2,4-dichlorophenoxyacetic acid.

Teixeira MC, Fernandes AR, Mira NP, Becker JD, Sá-Correia I.

FEMS Yeast Res. 2006 Mar;6(2):230-48.

44.

The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae.

Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP, Alenquer M, Freitas AT, Oliveira AL, Sá-Correia I.

Nucleic Acids Res. 2006 Jan 1;34(Database issue):D446-51.

45.

Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes.

Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sá-Correia I.

Biochem Biophys Res Commun. 2005 Nov 11;337(1):95-103.

PMID:
16176797

Supplemental Content

Support Center