Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 87

1.

Evidence from vergence eye movements that disparities defined by luminance and contrast are sensed by independent mechanisms.

Rambold HA, Sheliga BM, Miles FA.

J Vis. 2010 Dec 29;10(14). pii: 31. doi: 10.1167/10.14.31.

PMID:
21191131
2.

The initial torsional Ocular Following Response (tOFR) in humans: a response to the total motion energy in the stimulus?

Sheliga BM, Fitzgibbon EJ, Miles FA.

J Vis. 2009 Nov 9;9(12):2.1-38. doi: 10.1167/9.12.2.

3.

The initial disparity vergence elicited with single and dual grating stimuli in monkeys: evidence for disparity energy sensing and nonlinear interactions.

Miura K, Sugita Y, Matsuura K, Inaba N, Kawano K, Miles FA.

J Neurophysiol. 2008 Nov;100(5):2907-18. doi: 10.1152/jn.90535.2008. Epub 2008 Sep 3.

4.

Short-latency disparity vergence eye movements: dependence on the preƫxisting vergence angle.

Rambold HA, Miles FA.

Prog Brain Res. 2008;171:245-51. doi: 10.1016/S0079-6123(08)00634-1.

5.

Human ocular following: evidence that responses to large-field stimuli are limited by local and global inhibitory influences.

Sheliga BM, FitzGibbon EJ, Miles FA.

Prog Brain Res. 2008;171:237-43. doi: 10.1016/S0079-6123(08)00633-X.

6.

Human vergence eye movements to oblique disparity stimuli: evidence for an anisotropy favoring horizontal disparities.

Rambold HA, Miles FA.

Vision Res. 2008 Sep;48(19):2006-19. doi: 10.1016/j.visres.2008.05.009.

7.

Spatial summation properties of the human ocular following response (OFR): evidence for nonlinearities due to local and global inhibitory interactions.

Sheliga BM, Fitzgibbon EJ, Miles FA.

Vision Res. 2008 Aug;48(17):1758-76. doi: 10.1016/j.visres.2008.05.017. Epub 2008 Jul 7.

8.

Ocular following responses of monkeys to the competing motions of two sinusoidal gratings.

Matsuura K, Miura K, Taki M, Tabata H, Inaba N, Kawano K, Miles FA.

Neurosci Res. 2008 May;61(1):56-69. doi: 10.1016/j.neures.2008.01.010. Epub 2008 Jan 31.

9.

The vergence eye movements induced by radial optic flow: some fundamental properties of the underlying local-motion detectors.

Kodaka Y, Sheliga BM, FitzGibbon EJ, Miles FA.

Vision Res. 2007 Sep;47(20):2637-60. Epub 2007 Aug 15.

10.

Deficits in short-latency tracking eye movements after chemical lesions in monkey cortical areas MT and MST.

Takemura A, Murata Y, Kawano K, Miles FA.

J Neurosci. 2007 Jan 17;27(3):529-41.

11.

Human vergence eye movements initiated by competing disparities: evidence for a winner-take-all mechanism.

Sheliga BM, FitzGibbon EJ, Miles FA.

Vision Res. 2007 Feb;47(4):479-500. Epub 2006 Nov 21.

12.

Short-latency disparity vergence eye movements: a response to disparity energy.

Sheliga BM, FitzGibbon EJ, Miles FA.

Vision Res. 2006 Oct;46(21):3723-40. Epub 2006 Jun 12.

13.

Contrast sensitivity, first-order motion and Initial ocular following in demyelinating optic neuropathy.

Rucker JC, Sheliga BM, Fitzgibbon EJ, Miles FA, Leigh RJ.

J Neurol. 2006 Sep;253(9):1203-9. Epub 2006 Apr 28.

14.

Human ocular following initiated by competing image motions: evidence for a winner-take-all mechanism.

Sheliga BM, Kodaka Y, FitzGibbon EJ, Miles FA.

Vision Res. 2006 Jun;46(13):2041-60. Epub 2006 Feb 20.

15.

The visual motion detectors underlying ocular following responses in monkeys.

Miura K, Matsuura K, Taki M, Tabata H, Inaba N, Kawano K, Miles FA.

Vision Res. 2006 Mar;46(6-7):869-78. Epub 2005 Dec 13.

16.

The initial ocular following responses elicited by apparent-motion stimuli: reversal by inter-stimulus intervals.

Sheliga BM, Chen KJ, FitzGibbon EJ, Miles FA.

Vision Res. 2006 Mar;46(6-7):979-92. Epub 2005 Oct 18.

17.

Initial ocular following in humans: a response to first-order motion energy.

Sheliga BM, Chen KJ, Fitzgibbon EJ, Miles FA.

Vision Res. 2005 Nov;45(25-26):3307-21.

18.

Initial ocular following in humans depends critically on the fourier components of the motion stimulus.

Chen KJ, Sheliga BM, Fitzgibbon EJ, Miles FA.

Ann N Y Acad Sci. 2005 Apr;1039:260-71. Review.

19.

Short-latency disparity vergence in humans: evidence for early spatial filtering.

Sheliga BM, Chen KJ, Fitzgibbon EJ, Miles FA.

Ann N Y Acad Sci. 2005 Apr;1039:252-9.

20.
22.
23.
24.

Reversed short-latency ocular following.

Masson GS, Yang DS, Miles FA.

Vision Res. 2002 Aug;42(17):2081-7.

25.

Voluntary saccadic eye movements in humans studied with a double-cue paradigm.

Sheliga BM, Brown VJ, Miles FA.

Vision Res. 2002 Jul;42(15):1897-915.

26.

Population coding in cortical area MST.

Takemura A, Kawano K, Quaia C, Miles FA.

Ann N Y Acad Sci. 2002 Apr;956:284-96. Review.

PMID:
11960812
27.

Short-latency ocular following in humans: sensitivity to binocular disparity.

Masson GS, Busettini C, Yang DS, Miles FA.

Vision Res. 2001;41(25-26):3371-87.

28.

Single-unit activity in cortical area MST associated with disparity-vergence eye movements: evidence for population coding.

Takemura A, Inoue Y, Kawano K, Quaia C, Miles FA.

J Neurophysiol. 2001 May;85(5):2245-66.

29.

Short-latency disparity vergence in humans.

Busettini C, Fitzgibbon EJ, Miles FA.

J Neurophysiol. 2001 Mar;85(3):1129-52.

30.

The role of MST neurons during ocular tracking in 3D space.

Kawano K, Inoue Y, Takemura A, Kodaka Y, Miles FA.

Int Rev Neurobiol. 2000;44:49-63. Review. No abstract available.

PMID:
10605641
31.

Target selection for pursuit and saccadic eye movements in humans.

Krauzlis RJ, Zivotofsky AZ, Miles FA.

J Cogn Neurosci. 1999 Nov;11(6):641-9.

PMID:
10601745
32.
33.
34.
35.

The neural processing of 3-D visual information: evidence from eye movements.

Miles FA.

Eur J Neurosci. 1998 Mar;10(3):811-22. Review.

PMID:
9753150
36.

Dependence of short-latency ocular following and associated activity in the medial superior temporal area (MST) on ocular vergence.

Inoue Y, Takemura A, Kawano K, Kitama T, Miles FA.

Exp Brain Res. 1998 Jul;121(2):135-44.

PMID:
9696382
37.

Visual stabilization of the eyes in primates.

Miles FA.

Curr Opin Neurobiol. 1997 Dec;7(6):867-71. Review.

PMID:
9464972
38.

Radial optic flow induces vergence eye movements with ultra-short latencies.

Busettini C, Masson GS, Miles FA.

Nature. 1997 Dec 4;390(6659):512-5.

PMID:
9394000
39.

Vergence eye movements in response to binocular disparity without depth perception.

Masson GS, Busettini C, Miles FA.

Nature. 1997 Sep 18;389(6648):283-6.

PMID:
9305842
40.

Initiation of saccades during fixation or pursuit: evidence in humans for a single mechanism.

Krauzlis RJ, Miles FA.

J Neurophysiol. 1996 Dec;76(6):4175-9.

PMID:
8985910
41.
42.

Transitions between pursuit eye movements and fixation in the monkey: dependence on context.

Krauzlis RJ, Miles FA.

J Neurophysiol. 1996 Sep;76(3):1622-38.

PMID:
8890281
44.

Short-latency disparity vergence responses and their dependence on a prior saccadic eye movement.

Busettini C, Miles FA, Krauzlis RJ.

J Neurophysiol. 1996 Apr;75(4):1392-410.

PMID:
8727386
45.

A role for stereoscopic depth cues in the rapid visual stabilization of the eyes.

Busettini C, Masson GS, Miles FA.

Nature. 1996 Mar 28;380(6572):342-5.

PMID:
8598928
46.

Short-latency compensatory eye movements associated with a brief period of free fall.

Bush GA, Miles FA.

Exp Brain Res. 1996 Mar;108(2):337-40. Erratum in: Exp Brain Res 1996 May;109(2):366.

PMID:
8815042
47.

Effect of disparity in the peripheral field on short-latency ocular following responses.

Kawano K, Inoue Y, Takemura A, Miles FA.

Vis Neurosci. 1994 Jul-Aug;11(4):833-7.

PMID:
7918233
48.

Human ocular responses to translation of the observer and of the scene: dependence on viewing distance.

Busettini C, Miles FA, Schwarz U, Carl JR.

Exp Brain Res. 1994;100(3):484-94.

PMID:
7813684
49.
50.

Effects of stationary textured backgrounds on the initiation of pursuit eye movements in monkeys.

Kimmig HG, Miles FA, Schwarz U.

J Neurophysiol. 1992 Dec;68(6):2147-64.

PMID:
1491264

Supplemental Content

Loading ...
Support Center