Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 127

1.

TOMM40 '523 Associations with Baseline and Longitudinal Cognition in APOE ɛ3 Homozygotes.

Watts A, Wilkins HM, Michaelis E, Swerdlow RH.

J Alzheimers Dis. 2019 Jul 15. doi: 10.3233/JAD-190293. [Epub ahead of print]

PMID:
31322569
2.

Mitochondrial Electron Transfer Cascade Enzyme Activity Assessment in Cultured Neurons and Select Brain Regions.

Agbas A, Krishnamurthy P, Michaelis ML, Michaelis EK.

Curr Protoc Toxicol. 2019 Jun;80(1):e73. doi: 10.1002/cptx.73. Epub 2019 Apr 5.

PMID:
30951613
3.

Effects of Ethanol Exposure on the Neurochemical Profile of a Transgenic Mouse Model with Enhanced Glutamate Release Using In Vivo 1H MRS.

Wang WT, Lee P, Hui D, Michaelis EK, Choi IY.

Neurochem Res. 2019 Jan;44(1):133-146. doi: 10.1007/s11064-018-2658-9. Epub 2018 Oct 17.

PMID:
30334175
4.

Isolation of Synaptosomes, Synaptic Plasma Membranes, and Synaptic Junctional Complexes.

Michaelis ML, Jiang L, Michaelis EK.

Methods Mol Biol. 2017;1538:107-119.

PMID:
27943187
5.

Oxaloacetate enhances neuronal cell bioenergetic fluxes and infrastructure.

Wilkins HM, Koppel S, Carl SM, Ramanujan S, Weidling I, Michaelis ML, Michaelis EK, Swerdlow RH.

J Neurochem. 2016 Apr;137(1):76-87. doi: 10.1111/jnc.13545. Epub 2016 Mar 11.

6.

Ischemic tolerance in an in vivo model of glutamate preconditioning.

Badawi Y, Pal R, Hui D, Michaelis EK, Shi H.

J Neurosci Res. 2015 Apr;93(4):623-32. doi: 10.1002/jnr.23517. Epub 2014 Nov 25.

7.

Oxaloacetate activates brain mitochondrial biogenesis, enhances the insulin pathway, reduces inflammation and stimulates neurogenesis.

Wilkins HM, Harris JL, Carl SM, E L, Lu J, Eva Selfridge J, Roy N, Hutfles L, Koppel S, Morris J, Burns JM, Michaelis ML, Michaelis EK, Brooks WM, Swerdlow RH.

Hum Mol Genet. 2014 Dec 15;23(24):6528-41. doi: 10.1093/hmg/ddu371. Epub 2014 Jul 15.

8.

Gene expression patterns in the hippocampus during the development and aging of Glud1 (Glutamate Dehydrogenase 1) transgenic and wild type mice.

Wang X, Patel ND, Hui D, Pal R, Hafez MM, Sayed-Ahmed MM, Al-Yahya AA, Michaelis EK.

BMC Neurosci. 2014 Mar 4;15:37. doi: 10.1186/1471-2202-15-37.

9.

Metabolism changes during aging in the hippocampus and striatum of glud1 (glutamate dehydrogenase 1) transgenic mice.

Choi IY, Lee P, Wang WT, Hui D, Wang X, Brooks WM, Michaelis EK.

Neurochem Res. 2014;39(3):446-55. doi: 10.1007/s11064-014-1239-9. Epub 2014 Jan 21.

10.

Effects of gangliosides on the activity of the plasma membrane Ca2+-ATPase.

Jiang L, Bechtel MD, Bean JL, Winefield R, Williams TD, Zaidi A, Michaelis EK, Michaelis ML.

Biochim Biophys Acta. 2014 May;1838(5):1255-65. doi: 10.1016/j.bbamem.2014.01.003. Epub 2014 Jan 14.

11.

Bioenergetic flux, mitochondrial mass and mitochondrial morphology dynamics in AD and MCI cybrid cell lines.

Silva DF, Selfridge JE, Lu J, E L, Roy N, Hutfles L, Burns JM, Michaelis EK, Yan S, Cardoso SM, Swerdlow RH.

Hum Mol Genet. 2013 Oct 1;22(19):3931-46. doi: 10.1093/hmg/ddt247. Epub 2013 Jun 4.

12.

Fluorogenic tagging of protein 3-nitrotyrosine with 4-(aminomethyl)benzene sulfonate in tissues: a useful alternative to Immunohistochemistry for fluorescence microscopy imaging of protein nitration.

Sharov VS, Pal R, Dremina ES, Michaelis EK, Schöneich C.

Free Radic Biol Med. 2012 Nov 15;53(10):1877-85. doi: 10.1016/j.freeradbiomed.2012.08.582. Epub 2012 Aug 31.

13.

Decreases in plasma membrane Ca²⁺-ATPase in brain synaptic membrane rafts from aged rats.

Jiang L, Bechtel MD, Galeva NA, Williams TD, Michaelis EK, Michaelis ML.

J Neurochem. 2012 Dec;123(5):689-99. doi: 10.1111/j.1471-4159.2012.07918.x. Epub 2012 Oct 11.

14.

Functional genomics of brain aging and Alzheimer's disease: focus on selective neuronal vulnerability.

Wang X, Michaelis ML, Michaelis EK.

Curr Genomics. 2010 Dec;11(8):618-33. doi: 10.2174/138920210793360943.

15.

Differential levels of glutamate dehydrogenase 1 (GLUD1) in Balb/c and C57BL/6 mice and the effects of overexpression of the Glud1 gene on glutamate release in striatum.

Hascup KN, Bao X, Hascup ER, Hui D, Xu W, Pomerleau F, Huettl P, Michaelis ML, Michaelis EK, Gerhardt GA.

ASN Neuro. 2011 Apr 21;3(2). pii: e00057. doi: 10.1042/AN20110005.

16.

Neuronal Glud1 (glutamate dehydrogenase 1) over-expressing mice: increased glutamate formation and synaptic release, loss of synaptic activity, and adaptive changes in genomic expression.

Michaelis EK, Wang X, Pal R, Bao X, Hascup KN, Wang Y, Wang WT, Hui D, Agbas A, Choi IY, Belousov A, Gerhardt GA.

Neurochem Int. 2011 Sep;59(4):473-81. doi: 10.1016/j.neuint.2011.03.003. Epub 2011 Mar 17.

17.

Crisis intervention by social workers in fire departments: an innovative role for social workers.

Cacciatore J, Carlson B, Michaelis E, Klimek B, Steffan S.

Soc Work. 2011 Jan;56(1):81-8.

PMID:
21314074
18.

Selective neuronal vulnerability to oxidative stress in the brain.

Wang X, Michaelis EK.

Front Aging Neurosci. 2010 Mar 30;2:12. doi: 10.3389/fnagi.2010.00012. eCollection 2010.

19.

Transcriptomic responses in mouse brain exposed to chronic excess of the neurotransmitter glutamate.

Wang X, Bao X, Pal R, Agbas A, Michaelis EK.

BMC Genomics. 2010 Jun 7;11:360. doi: 10.1186/1471-2164-11-360.

20.

Transgenic expression of Glud1 (glutamate dehydrogenase 1) in neurons: in vivo model of enhanced glutamate release, altered synaptic plasticity, and selective neuronal vulnerability.

Bao X, Pal R, Hascup KN, Wang Y, Wang WT, Xu W, Hui D, Agbas A, Wang X, Michaelis ML, Choi IY, Belousov AB, Gerhardt GA, Michaelis EK.

J Neurosci. 2009 Nov 4;29(44):13929-44. doi: 10.1523/JNEUROSCI.4413-09.2009.

21.

Integrating multiple microarray data for cancer pathway analysis using bootstrapping K-S test.

Han B, Chen XW, Wang X, Michaelis EK.

J Biomed Biotechnol. 2009;2009:707580. doi: 10.1155/2009/707580. Epub 2009 May 26.

22.

Genomic and biochemical approaches in the discovery of mechanisms for selective neuronal vulnerability to oxidative stress.

Wang X, Zaidi A, Pal R, Garrett AS, Braceras R, Chen XW, Michaelis ML, Michaelis EK.

BMC Neurosci. 2009 Feb 19;10:12. doi: 10.1186/1471-2202-10-12.

23.

A rat brain bicistronic gene with an internal ribosome entry site codes for a phencyclidine-binding protein with cytotoxic activity.

Hui D, Kumar KN, Mach JR, Srinivasan A, Pal R, Bao X, Agbas A, Höfner G, Wanner KT, Michaelis EK.

J Biol Chem. 2009 Jan 23;284(4):2245-57. doi: 10.1074/jbc.M807063200. Epub 2008 Nov 21.

24.

Genome-wide transcriptome profiling of region-specific vulnerability to oxidative stress in the hippocampus.

Wang X, Pal R, Chen XW, Kumar KN, Kim OJ, Michaelis EK.

Genomics. 2007 Aug;90(2):201-12. Epub 2007 Jun 5.

25.
26.

Photoelectrochemical characterisation and optimisation of electrodeposited ZnO thin films sensitised by porphyrins and phthalocyanines.

Nonomura K, Loewenstein T, Michaelis E, Wöhrle D, Yoshida T, Minoura H, Schlettwein D.

Phys Chem Chem Phys. 2006 Sep 7;8(33):3867-75.

PMID:
19817047
27.

Decreased activity and increased aggregation of brain calcineurin during aging.

Agbas A, Zaidi A, Michaelis EK.

Brain Res. 2005 Oct 12;1059(1):59-71. Epub 2005 Sep 8.

PMID:
16150427
28.

High intrinsic oxidative stress may underlie selective vulnerability of the hippocampal CA1 region.

Wang X, Pal R, Chen XW, Limpeanchob N, Kumar KN, Michaelis EK.

Brain Res Mol Brain Res. 2005 Oct 31;140(1-2):120-6. Epub 2005 Aug 31.

PMID:
16137784
29.

Anti-apoptotic protein Bcl-2 interacts with and destabilizes the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA).

Dremina ES, Sharov VS, Kumar K, Zaidi A, Michaelis EK, Schöneich C.

Biochem J. 2004 Oct 15;383(Pt 2):361-70.

30.

Selective dendrite-targeting of mRNAs of NR1 splice variants without exon 5: identification of a cis-acting sequence and isolation of sequence-binding proteins.

Pal R, Agbas A, Bao X, Hui D, Leary C, Hunt J, Naniwadekar A, Michaelis ML, Kumar KN, Michaelis EK.

Brain Res. 2003 Dec 19;994(1):1-18.

PMID:
14642443
31.

Oxidative inactivation of purified plasma membrane Ca2+-ATPase by hydrogen peroxide and protection by calmodulin.

Zaidi A, Barŕon L, Sharov VS, Schöneich C, Michaelis EK, Michaelis ML.

Biochemistry. 2003 Oct 21;42(41):12001-10.

PMID:
14556631
32.

Superoxide modification and inactivation of a neuronal receptor-like complex.

Agbas A, Chen X, Hong O, Kumar KN, Michaelis EK.

Free Radic Biol Med. 2002 Mar 15;32(6):512-24.

PMID:
11958952
33.
34.

Activity-dependent nitric oxide concentration dynamics in the laterodorsal tegmental nucleus in vitro.

Leonard CS, Michaelis EK, Mitchell KM.

J Neurophysiol. 2001 Nov;86(5):2159-72.

35.

High-probability amplification of genomic DNA starting from cDNA.

Hui D, Bao X, Michaelis EK.

Biotechniques. 2001 Aug;31(2):268-70, 272. No abstract available.

36.
37.
38.

Cloning of a brain N-methyl-D-aspartate- and D, L-epsilon-2-amino-4-propyl-5-phosphono-3-pentanoic acid (CGP 39653)-binding protein.

Kumar KN, Johnson PS, Chen X, Pal R, Ahmad M, Ragland T, Bigge C, Michaelis EK.

Biochem Biophys Res Commun. 1998 Dec 18;253(2):463-9.

PMID:
9878559
39.

The dose-response model for dioxin.

Byrd DM 3rd, Allen DO, Beamer RL, Besch HR Jr, Bylund DB, Doull J, Fleming WW, Fries A, Guengerich FP, Hornbrook R, Lasagna L, Lum BK, Michaelis EK, Morgan ET, Poland A, Rozman KK, Smith JB, Swanson HI, Waddell W, Wilson JD.

Risk Anal. 1998 Feb;18(1):1-2. No abstract available.

PMID:
9556441
41.

Protein half-lives of two subunits of an NMDA receptor-like complex, the 71-kDa glutamate-binding and the 80-kDa CPP-binding protein.

Chen X, Ferrington DA, Bigelow DJ, Michaelis EK.

Biochem Biophys Res Commun. 1997 Dec 8;241(1):132-5.

PMID:
9405246
43.

Protein half-lives of calmodulin and the plasma membrane Ca-ATPase in rat brain.

Ferrington DA, Chen X, Krainev AG, Michaelis EK, Bigelow DJ.

Biochem Biophys Res Commun. 1997 Aug 8;237(1):163-5.

PMID:
9266850
44.

L-glutamate and N-methyl-D-aspartate receptors: learning, growth, and death in the mammalian brain.

Michaelis EK.

Nutrition. 1997 Jul-Aug;13(7-8):696-7. No abstract available.

PMID:
9263266
45.

A synaptic membrane glycine-, glutamate- and thienylcyclohexylpiperidine-binding protein: isolation and immunochemical characterization.

Babcock KK, Chen X, Eggeman KT, Kumar KN, Decedue CJ, Michaelis EK.

Neurochem Int. 1996 Nov;29(5):507-19.

PMID:
8939461
46.

Ion channel properties of a protein complex with characteristics of a glutamate/N-methyl-D-aspartate receptor.

Aistrup GL, Szentirmay M, Kumar KN, Babcock KK, Schowen RL, Michaelis EK.

FEBS Lett. 1996 Sep 30;394(2):141-8.

47.

The 71 kDa glutamate-binding protein is increased in cerebellar granule cells after chronic ethanol treatment.

Hoffman PL, Bhave SV, Kumar KN, Iorio KR, Snell LD, Tabakoff B, Michaelis EK.

Brain Res Mol Brain Res. 1996 Jul;39(1-2):167-76.

PMID:
8804725
48.

Ethanol-induced inhibition of [3H]thienylcyclohexylpiperidine (TCP) binding to NMDA receptors in brain synaptic membranes and to a purified protein complex.

Michaelis EK, Chen X, Joseph DB, Hurlbert M, Kumar KN, Michaelis ML.

J Neurochem. 1996 Jul;67(1):201-11.

PMID:
8666993
49.

Localization of a gene for a glutamate binding subunit of a NMDA receptor (GRINA) to 8q24.

Lewis TB, Wood S, Michaelis EK, DuPont BR, Leach RJ.

Genomics. 1996 Feb 15;32(1):131-3.

PMID:
8786101
50.

Cloning of the cDNA for a brain glycine-, glutamate- and thienylcyclohexylpiperidine-binding protein.

Kumar KN, Babcock KK, Johnson PS, Chen X, Ahmad M, Michaelis EK.

Biochem Biophys Res Commun. 1995 Nov 2;216(1):390-8.

PMID:
7488117

Supplemental Content

Loading ...
Support Center