Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 21

1.

Spacer-length DNA intermediates are associated with Cas1 in cells undergoing primed CRISPR adaptation.

Musharova O, Klimuk E, Datsenko KA, Metlitskaya A, Logacheva M, Semenova E, Severinov K, Savitskaya E.

Nucleic Acids Res. 2017 Apr 7;45(6):3297-3307. doi: 10.1093/nar/gkx097.

2.

The action of Escherichia coli CRISPR-Cas system on lytic bacteriophages with different lifestyles and development strategies.

Strotskaya A, Savitskaya E, Metlitskaya A, Morozova N, Datsenko KA, Semenova E, Severinov K.

Nucleic Acids Res. 2017 Feb 28;45(4):1946-1957. doi: 10.1093/nar/gkx042.

3.

The molecular mechanism of aminopropylation of peptide-nucleotide antibiotic microcin C.

Kulikovsky A, Serebryakova M, Bantysh O, Metlitskaya A, Borukhov S, Severinov K, Dubiley S.

J Am Chem Soc. 2014 Aug 6;136(31):11168-75. doi: 10.1021/ja505982c. Epub 2014 Jul 23.

PMID:
25026542
4.

The RimL transacetylase provides resistance to translation inhibitor microcin C.

Kazakov T, Kuznedelov K, Semenova E, Mukhamedyarov D, Datsenko KA, Metlitskaya A, Vondenhoff GH, Tikhonov A, Agarwal V, Nair S, Van Aerschot A, Severinov K.

J Bacteriol. 2014 Oct;196(19):3377-85. doi: 10.1128/JB.01584-14. Epub 2014 Jul 7.

5.

High-throughput analysis of type I-E CRISPR/Cas spacer acquisition in E. coli.

Savitskaya E, Semenova E, Dedkov V, Metlitskaya A, Severinov K.

RNA Biol. 2013 May;10(5):716-25. doi: 10.4161/rna.24325. Epub 2013 Apr 25.

6.

Structure and function of a serine carboxypeptidase adapted for degradation of the protein synthesis antibiotic microcin C7.

Agarwal V, Tikhonov A, Metlitskaya A, Severinov K, Nair SK.

Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4425-30. doi: 10.1073/pnas.1114224109. Epub 2012 Mar 2.

7.

Structural basis for microcin C7 inactivation by the MccE acetyltransferase.

Agarwal V, Metlitskaya A, Severinov K, Nair SK.

J Biol Chem. 2011 Jun 17;286(24):21295-303. doi: 10.1074/jbc.M111.226282. Epub 2011 Apr 19.

8.

Synthetic microcin C analogs targeting different aminoacyl-tRNA synthetases.

Van de Vijver P, Vondenhoff GH, Kazakov TS, Semenova E, Kuznedelov K, Metlitskaya A, Van Aerschot A, Severinov K.

J Bacteriol. 2009 Oct;191(20):6273-80. doi: 10.1128/JB.00829-09. Epub 2009 Aug 14.

9.

Maturation of the translation inhibitor microcin C.

Metlitskaya A, Kazakov T, Vondenhoff GH, Novikova M, Shashkov A, Zatsepin T, Semenova E, Zaitseva N, Ramensky V, Van Aerschot A, Severinov K.

J Bacteriol. 2009 Apr;191(7):2380-7. doi: 10.1128/JB.00999-08. Epub 2009 Jan 23.

10.

Escherichia coli peptidase A, B, or N can process translation inhibitor microcin C.

Kazakov T, Vondenhoff GH, Datsenko KA, Novikova M, Metlitskaya A, Wanner BL, Severinov K.

J Bacteriol. 2008 Apr;190(7):2607-10. doi: 10.1128/JB.01956-07. Epub 2008 Jan 25.

11.

The Escherichia coli Yej transporter is required for the uptake of translation inhibitor microcin C.

Novikova M, Metlitskaya A, Datsenko K, Kazakov T, Kazakov A, Wanner B, Severinov K.

J Bacteriol. 2007 Nov;189(22):8361-5. Epub 2007 Sep 14.

12.

Amino acid residues required for maturation, cell uptake, and processing of translation inhibitor microcin C.

Kazakov T, Metlitskaya A, Severinov K.

J Bacteriol. 2007 Mar;189(5):2114-8. Epub 2006 Dec 8.

13.

Aspartyl-tRNA synthetase is the target of peptide nucleotide antibiotic Microcin C.

Metlitskaya A, Kazakov T, Kommer A, Pavlova O, Praetorius-Ibba M, Ibba M, Krasheninnikov I, Kolb V, Khmel I, Severinov K.

J Biol Chem. 2006 Jun 30;281(26):18033-42. Epub 2006 Mar 30.

14.

Production of N-acylhomoserine lactone signal molecules by gram-negative soil-borne and plant-associated bacteria.

Veselova M, Kholmeckaya M, Klein S, Voronina E, Lipasova V, Metlitskaya A, Mayatskaya A, Lobanok E, Khmel I, Chernin L.

Folia Microbiol (Praha). 2003;48(6):794-8.

PMID:
15058194
15.

Microcin C51 plasmid genes: possible source of horizontal gene transfer.

Fomenko DE, Metlitskaya AZ, PĂ©duzzi J, Goulard C, Katrukha GS, Gening LV, Rebuffat S, Khmel IA.

Antimicrob Agents Chemother. 2003 Sep;47(9):2868-74.

16.

Structure of microcin C51, a new antibiotic with a broad spectrum of activity.

Metlitskaya AZ, Katrukha GS, Shashkov AS, Zaitsev DA, Egorov TA, Khmel IA.

FEBS Lett. 1995 Jan 9;357(3):235-8.

17.

Cloning and mapping of the genetic determinants for microcin C51 production and immunity.

Kurepina NE, Basyuk EI, Metlitskaya AZ, Zaitsev DA, Khmel IA.

Mol Gen Genet. 1993 Dec;241(5-6):700-6.

PMID:
8264544
18.

Isolation and characterization of Escherichia coli strains producing microcins of B and C types.

Khmel IA, Bondarenko VM, Manokhina IM, Basyuk EI, Metlitskaya AZ, Lipasova VA, Romanova YM.

FEMS Microbiol Lett. 1993 Aug 1;111(2-3):269-74.

PMID:
8405936
19.
21.

The action of mutagens on MS2 phage and on its infective RNA. V. Kinetics of the chemical and functional changes of the genome under hydroxylamine treatment.

Budowsky EI, Krivisky AS, Klebanova LM, Metlitskaya AZ, Turchinsky MF, Savin FA.

Mutat Res. 1974 Sep;24(3):245-58. No abstract available.

PMID:
4416082

Supplemental Content

Loading ...
Support Center