Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 92

1.

Hypoxia-inducible factor-1α plays roles in Epstein-Barr virus's natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter.

Kraus RJ, Yu X, Cordes BA, Sathiamoorthi S, Iempridee T, Nawandar DM, Ma S, Romero-Masters JC, McChesney KG, Lin Z, Makielski KR, Lee DL, Lambert PF, Johannsen EC, Kenney SC, Mertz JE.

PLoS Pathog. 2017 Jun 15;13(6):e1006404. doi: 10.1371/journal.ppat.1006404. eCollection 2017 Jun.

2.

Lenalidomide, Thalidomide, and Pomalidomide Reactivate the Epstein-Barr Virus Lytic Cycle through Phosphoinositide 3-Kinase Signaling and Ikaros Expression.

Jones RJ, Iempridee T, Wang X, Lee HC, Mertz JE, Kenney SC, Lin HC, Baladandayuthapani V, Dawson CW, Shah JJ, Weber DM, Orlowski RZ.

Clin Cancer Res. 2016 Oct 1;22(19):4901-4912. Epub 2016 Jun 13.

3.

Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells.

Nawandar DM, Wang A, Makielski K, Lee D, Ma S, Barlow E, Reusch J, Jiang R, Wille CK, Greenspan D, Greenspan JS, Mertz JE, Hutt-Fletcher L, Johannsen EC, Lambert PF, Kenney SC.

PLoS Pathog. 2015 Oct 2;11(10):e1005195. doi: 10.1371/journal.ppat.1005195. eCollection 2015 Oct.

4.

Cellular differentiation regulator BLIMP1 induces Epstein-Barr virus lytic reactivation in epithelial and B cells by activating transcription from both the R and Z promoters.

Reusch JA, Nawandar DM, Wright KL, Kenney SC, Mertz JE.

J Virol. 2015 Feb;89(3):1731-43. doi: 10.1128/JVI.02781-14. Epub 2014 Nov 19.

5.

Epstein-Barr virus utilizes Ikaros in regulating its latent-lytic switch in B cells.

Iempridee T, Reusch JA, Riching A, Johannsen EC, Dovat S, Kenney SC, Mertz JE.

J Virol. 2014 May;88(9):4811-27. doi: 10.1128/JVI.03706-13. Epub 2014 Feb 12.

6.

Regulation of the latent-lytic switch in Epstein-Barr virus.

Kenney SC, Mertz JE.

Semin Cancer Biol. 2014 Jun;26:60-8. doi: 10.1016/j.semcancer.2014.01.002. Epub 2014 Jan 20. Review.

7.

Reversal of transforming growth factor-β induced epithelial-to-mesenchymal transition and the ZEB proteins.

Das S, Becker BN, Hoffmann FM, Mertz JE.

Fibrogenesis Tissue Repair. 2012 Jun 6;5(Suppl 1):S28. doi: 10.1186/1755-1536-5-S1-S28. eCollection 2012.

8.

An Epstein-Barr Virus (EBV) mutant with enhanced BZLF1 expression causes lymphomas with abortive lytic EBV infection in a humanized mouse model.

Ma SD, Yu X, Mertz JE, Gumperz JE, Reinheim E, Zhou Y, Tang W, Burlingham WJ, Gulley ML, Kenney SC.

J Virol. 2012 Aug;86(15):7976-87. doi: 10.1128/JVI.00770-12. Epub 2012 May 23.

9.

Shutoff of BZLF1 gene expression is necessary for immortalization of primary B cells by Epstein-Barr virus.

Yu X, McCarthy PJ, Wang Z, Gorlen DA, Mertz JE.

J Virol. 2012 Aug;86(15):8086-96. doi: 10.1128/JVI.00234-12. Epub 2012 May 23.

10.

Production and characterization of monoclonal antibodies to estrogen-related receptor alpha (ERRα) and use in immunoaffinity chromatography.

Esch AM, Thompson NE, Lamberski JA, Mertz JE, Burgess RR.

Protein Expr Purif. 2012 Jul;84(1):47-58. doi: 10.1016/j.pep.2012.04.020. Epub 2012 May 4.

11.
12.

The ZIIR element of the Epstein-Barr virus BZLF1 promoter plays a central role in establishment and maintenance of viral latency.

Yu X, McCarthy PJ, Lim HJ, Iempridee T, Kraus RJ, Gorlen DA, Mertz JE.

J Virol. 2011 May;85(10):5081-90. doi: 10.1128/JVI.02615-10. Epub 2011 Mar 9.

13.

Cellular microRNAs 200b and 429 regulate the Epstein-Barr virus switch between latency and lytic replication.

Ellis-Connell AL, Iempridee T, Xu I, Mertz JE.

J Virol. 2010 Oct;84(19):10329-43. doi: 10.1128/JVI.00923-10. Epub 2010 Jul 28.

14.

Either ZEB1 or ZEB2/SIP1 can play a central role in regulating the Epstein-Barr virus latent-lytic switch in a cell-type-specific manner.

Ellis AL, Wang Z, Yu X, Mertz JE.

J Virol. 2010 Jun;84(12):6139-52. doi: 10.1128/JVI.02706-09. Epub 2010 Apr 7.

15.

Sumoylation of the Epstein-Barr virus BZLF1 protein inhibits its transcriptional activity and is regulated by the virus-encoded protein kinase.

Hagemeier SR, Dickerson SJ, Meng Q, Yu X, Mertz JE, Kenney SC.

J Virol. 2010 May;84(9):4383-94. doi: 10.1128/JVI.02369-09. Epub 2010 Feb 24.

16.

Personal reflections on the origins and emergence of recombinant DNA technology.

Berg P, Mertz JE.

Genetics. 2010 Jan;184(1):9-17. doi: 10.1534/genetics.109.112144.

17.

Complete reversal of epithelial to mesenchymal transition requires inhibition of both ZEB expression and the Rho pathway.

Das S, Becker BN, Hoffmann FM, Mertz JE.

BMC Cell Biol. 2009 Dec 21;10:94. doi: 10.1186/1471-2121-10-94.

18.

Gender, culture, and mathematics performance.

Hyde JS, Mertz JE.

Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8801-7. doi: 10.1073/pnas.0901265106. Epub 2009 Jun 1.

19.

ZEB1 regulates the latent-lytic switch in infection by Epstein-Barr virus.

Yu X, Wang Z, Mertz JE.

PLoS Pathog. 2007 Dec;3(12):e194.

20.

Phosphorylation-dependent sumoylation of estrogen-related receptor alpha1.

Vu EH, Kraus RJ, Mertz JE.

Biochemistry. 2007 Aug 28;46(34):9795-804. Epub 2007 Aug 4.

PMID:
17676930
21.

ZEB1 and c-Jun levels contribute to the establishment of highly lytic Epstein-Barr virus infection in gastric AGS cells.

Feng WH, Kraus RJ, Dickerson SJ, Lim HJ, Jones RJ, Yu X, Mertz JE, Kenney SC.

J Virol. 2007 Sep;81(18):10113-22. Epub 2007 Jul 11.

22.

Estrogen-related receptor alpha1 transcriptional activities are regulated in part via the ErbB2/HER2 signaling pathway.

Ariazi EA, Kraus RJ, Farrell ML, Jordan VC, Mertz JE.

Mol Cancer Res. 2007 Jan;5(1):71-85.

26.

ZEB negatively regulates the lytic-switch BZLF1 gene promoter of Epstein-Barr virus.

Kraus RJ, Perrigoue JG, Mertz JE.

J Virol. 2003 Jan;77(1):199-207.

28.
30.

Estrogen-related receptor alpha 1 actively antagonizes estrogen receptor-regulated transcription in MCF-7 mammary cells.

Kraus RJ, Ariazi EA, Farrell ML, Mertz JE.

J Biol Chem. 2002 Jul 5;277(27):24826-34. Epub 2002 May 1.

31.
32.

Nuclear factor 1 family members mediate repression of the BK virus late promoter.

Kraus RJ, Shadley L, Mertz JE.

Virology. 2001 Aug 15;287(1):89-104.

33.

Quantitation and structural analysis of SV40 RNAs.

Kraus RJ, Mertz JE.

Methods Mol Biol. 2001;165:87-101. No abstract available.

PMID:
11217397
34.

Cell-free transcription of SV40.

Kraus RJ, Mertz JE.

Methods Mol Biol. 2001;165:69-85. No abstract available.

PMID:
11217396
35.

Identification of a novel element involved in regulation of the lytic switch BZLF1 gene promoter of Epstein-Barr virus.

Kraus RJ, Mirocha SJ, Stephany HM, Puchalski JR, Mertz JE.

J Virol. 2001 Jan;75(2):867-77.

37.
38.

Estrogen-related receptor alpha 1 functionally binds as a monomer to extended half-site sequences including ones contained within estrogen-response elements.

Johnston SD, Liu X, Zuo F, Eisenbraun TL, Wiley SR, Kraus RJ, Mertz JE.

Mol Endocrinol. 1997 Mar;11(3):342-52.

PMID:
9058380
39.

Direct modulation of simian virus 40 late gene expression by thyroid hormone and its receptor.

Zuo F, Kraus RJ, Gulick T, Moore DD, Mertz JE.

J Virol. 1997 Jan;71(1):427-36.

42.

Experimentally determined weight matrix definitions of the initiator and TBP binding site elements of promoters.

Kraus RJ, Murray EE, Wiley SR, Zink NM, Loritz K, Gelembiuk GW, Mertz JE.

Nucleic Acids Res. 1996 Apr 15;24(8):1531-9.

44.
45.
46.
47.

SV40 early-to-late switch involves titration of cellular transcriptional repressors.

Wiley SR, Kraus RJ, Zuo F, Murray EE, Loritz K, Mertz JE.

Genes Dev. 1993 Nov;7(11):2206-19.

48.

On achieving better than 1-A accuracy in a simulation of a large protein: Streptomyces griseus protease A.

Kitson DH, Avbelj F, Moult J, Nguyen DT, Mertz JE, Hadzi D, Hagler AT.

Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8920-4.

49.
50.

Supplemental Content

Loading ...
Support Center