Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 35

1.

Copper-Induced Expression of a Transmissible Lipoprotein Intramolecular Transacylase Alters Lipoprotein Acylation and the Toll-Like Receptor 2 Response to Listeria monocytogenes.

Armbruster KM, Komazin G, Meredith TC.

J Bacteriol. 2019 Jun 10;201(13). pii: e00195-19. doi: 10.1128/JB.00195-19. Print 2019 Jul 1.

PMID:
30988036
2.
3.

Cell-based screen for discovering lipopolysaccharide biogenesis inhibitors.

Zhang G, Baidin V, Pahil KS, Moison E, Tomasek D, Ramadoss NS, Chatterjee AK, McNamara CW, Young TS, Schultz PG, Meredith TC, Kahne D.

Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6834-6839. doi: 10.1073/pnas.1804670115. Epub 2018 May 7.

4.

Genome-wide mutant profiling predicts the mechanism of a Lipid II binding antibiotic.

Santiago M, Lee W, Fayad AA, Coe KA, Rajagopal M, Do T, Hennessen F, Srisuknimit V, Müller R, Meredith TC, Walker S.

Nat Chem Biol. 2018 Jun;14(6):601-608. doi: 10.1038/s41589-018-0041-4. Epub 2018 Apr 16.

5.

Salt-Induced Stress Stimulates a Lipoteichoic Acid-Specific Three-Component Glycosylation System in Staphylococcus aureus.

Kho K, Meredith TC.

J Bacteriol. 2018 May 24;200(12). pii: e00017-18. doi: 10.1128/JB.00017-18. Print 2018 Jun 15.

6.

Antibiotic Combinations That Enable One-Step, Targeted Mutagenesis of Chromosomal Genes.

Lee W, Do T, Zhang G, Kahne D, Meredith TC, Walker S.

ACS Infect Dis. 2018 Jun 8;4(6):1007-1018. doi: 10.1021/acsinfecdis.8b00017. Epub 2018 Mar 23.

7.

Antibiotic That Inhibits the ATPase Activity of an ATP-Binding Cassette Transporter by Binding to a Remote Extracellular Site.

Matano LM, Morris HG, Hesser AR, Martin SES, Lee W, Owens TW, Laney E, Nakaminami H, Hooper D, Meredith TC, Walker S.

J Am Chem Soc. 2017 Aug 9;139(31):10597-10600. doi: 10.1021/jacs.7b04726. Epub 2017 Jul 28.

8.

Identification of the Lyso-Form N-Acyl Intramolecular Transferase in Low-GC Firmicutes.

Armbruster KM, Meredith TC.

J Bacteriol. 2017 May 9;199(11). pii: e00099-17. doi: 10.1128/JB.00099-17. Print 2017 Jun 1.

9.

A Fluorescent Probe Distinguishes between Inhibition of Early and Late Steps of Lipopolysaccharide Biogenesis in Whole Cells.

Moison E, Xie R, Zhang G, Lebar MD, Meredith TC, Kahne D.

ACS Chem Biol. 2017 Apr 21;12(4):928-932. doi: 10.1021/acschembio.7b00159. Epub 2017 Mar 9.

10.

Accelerating the discovery of antibacterial compounds using pathway-directed whole cell screening.

Matano LM, Morris HG, Wood BM, Meredith TC, Walker S.

Bioorg Med Chem. 2016 Dec 15;24(24):6307-6314. doi: 10.1016/j.bmc.2016.08.003. Epub 2016 Aug 16.

11.

A synthetic lethal approach for compound and target identification in Staphylococcus aureus.

Pasquina L, Santa Maria JP Jr, McKay Wood B, Moussa SH, Matano LM, Santiago M, Martin SE, Lee W, Meredith TC, Walker S.

Nat Chem Biol. 2016 Jan;12(1):40-5. doi: 10.1038/nchembio.1967. Epub 2015 Nov 30.

12.

Erratum to: Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins.

Mamat U, Wilke K, Bramhill D, Schromm AB, Lindner B, Kohl TA, Corchero JL, Villaverde A, Schaffer L, Head SR, Souvignier C, Meredith TC, Woodard RW.

Microb Cell Fact. 2015 Jun 11;14:81. doi: 10.1186/s12934-015-0265-x. No abstract available.

13.

Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins.

Mamat U, Wilke K, Bramhill D, Schromm AB, Lindner B, Kohl TA, Corchero JL, Villaverde A, Schaffer L, Head SR, Souvignier C, Meredith TC, Woodard RW.

Microb Cell Fact. 2015 Apr 16;14:57. doi: 10.1186/s12934-015-0241-5. Erratum in: Microb Cell Fact. 2015;14:81.

14.

A new platform for ultra-high density Staphylococcus aureus transposon libraries.

Santiago M, Matano LM, Moussa SH, Gilmore MS, Walker S, Meredith TC.

BMC Genomics. 2015 Mar 29;16:252. doi: 10.1186/s12864-015-1361-3.

15.

On the essentiality of lipopolysaccharide to Gram-negative bacteria.

Zhang G, Meredith TC, Kahne D.

Curr Opin Microbiol. 2013 Dec;16(6):779-85. doi: 10.1016/j.mib.2013.09.007. Epub 2013 Oct 19. Review.

16.

Deletion of the β-acetoacetyl synthase FabY in Pseudomonas aeruginosa induces hypoacylation of lipopolysaccharide and increases antimicrobial susceptibility.

Six DA, Yuan Y, Leeds JA, Meredith TC.

Antimicrob Agents Chemother. 2014;58(1):153-61. doi: 10.1128/AAC.01804-13. Epub 2013 Oct 21.

17.

Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents.

Wang H, Gill CJ, Lee SH, Mann P, Zuck P, Meredith TC, Murgolo N, She X, Kales S, Liang L, Liu J, Wu J, Santa Maria J, Su J, Pan J, Hailey J, Mcguinness D, Tan CM, Flattery A, Walker S, Black T, Roemer T.

Chem Biol. 2013 Feb 21;20(2):272-84. doi: 10.1016/j.chembiol.2012.11.013.

18.

Harnessing the power of transposon mutagenesis for antibacterial target identification and evaluation.

Meredith TC, Wang H, Beaulieu P, Gründling A, Roemer T.

Mob Genet Elements. 2012 Jul 1;2(4):171-178.

19.

Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids.

Brown S, Xia G, Luhachack LG, Campbell J, Meredith TC, Chen C, Winstel V, Gekeler C, Irazoqui JE, Peschel A, Walker S.

Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):18909-14. doi: 10.1073/pnas.1209126109. Epub 2012 Oct 1.

20.

Fatty acid biosynthesis in Pseudomonas aeruginosa is initiated by the FabY class of β-ketoacyl acyl carrier protein synthases.

Yuan Y, Sachdeva M, Leeds JA, Meredith TC.

J Bacteriol. 2012 Oct;194(19):5171-84. doi: 10.1128/JB.00792-12. Epub 2012 Jun 29.

21.

Pseudomonas aeruginosa directly shunts β-oxidation degradation intermediates into de novo fatty acid biosynthesis.

Yuan Y, Leeds JA, Meredith TC.

J Bacteriol. 2012 Oct;194(19):5185-96. doi: 10.1128/JB.00860-12. Epub 2012 Jun 29.

22.

Restoring methicillin-resistant Staphylococcus aureus susceptibility to β-lactam antibiotics.

Tan CM, Therien AG, Lu J, Lee SH, Caron A, Gill CJ, Lebeau-Jacob C, Benton-Perdomo L, Monteiro JM, Pereira PM, Elsen NL, Wu J, Deschamps K, Petcu M, Wong S, Daigneault E, Kramer S, Liang L, Maxwell E, Claveau D, Vaillancourt J, Skorey K, Tam J, Wang H, Meredith TC, Sillaots S, Wang-Jarantow L, Ramtohul Y, Langlois E, Landry F, Reid JC, Parthasarathy G, Sharma S, Baryshnikova A, Lumb KJ, Pinho MG, Soisson SM, Roemer T.

Sci Transl Med. 2012 Mar 21;4(126):126ra35. doi: 10.1126/scitranslmed.3003592.

23.

Antagonism of chemical genetic interaction networks resensitize MRSA to β-lactam antibiotics.

Lee SH, Jarantow LW, Wang H, Sillaots S, Cheng H, Meredith TC, Thompson J, Roemer T.

Chem Biol. 2011 Nov 23;18(11):1379-89. doi: 10.1016/j.chembiol.2011.08.015.

24.

High-frequency transposition for determining antibacterial mode of action.

Wang H, Claveau D, Vaillancourt JP, Roemer T, Meredith TC.

Nat Chem Biol. 2011 Sep 4;7(10):720-9. doi: 10.1038/nchembio.643.

PMID:
21892185
25.

A unique arabinose 5-phosphate isomerase found within a genomic island associated with the uropathogenicity of Escherichia coli CFT073.

Mosberg JA, Yep A, Meredith TC, Smith S, Wang PF, Holler TP, Mobley HL, Woodard RW.

J Bacteriol. 2011 Jun;193(12):2981-8. doi: 10.1128/JB.00033-11. Epub 2011 Apr 15.

26.

Wall teichoic acid function, biosynthesis, and inhibition.

Swoboda JG, Campbell J, Meredith TC, Walker S.

Chembiochem. 2010 Jan 4;11(1):35-45. doi: 10.1002/cbic.200900557. Review. No abstract available.

27.

Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus.

Swoboda JG, Meredith TC, Campbell J, Brown S, Suzuki T, Bollenbach T, Malhowski AJ, Kishony R, Gilmore MS, Walker S.

ACS Chem Biol. 2009 Oct 16;4(10):875-83. doi: 10.1021/cb900151k.

28.

WaaA of the hyperthermophilic bacterium Aquifex aeolicus is a monofunctional 3-deoxy-D-manno-oct-2-ulosonic acid transferase involved in lipopolysaccharide biosynthesis.

Mamat U, Schmidt H, Munoz E, Lindner B, Fukase K, Hanuszkiewicz A, Wu J, Meredith TC, Woodard RW, Hilgenfeld R, Mesters JR, Holst O.

J Biol Chem. 2009 Aug 14;284(33):22248-62. doi: 10.1074/jbc.M109.033308. Epub 2009 Jun 22.

29.

Late-stage polyribitol phosphate wall teichoic acid biosynthesis in Staphylococcus aureus.

Meredith TC, Swoboda JG, Walker S.

J Bacteriol. 2008 Apr;190(8):3046-56. doi: 10.1128/JB.01880-07. Epub 2008 Feb 15.

30.

Single amino acid substitutions in either YhjD or MsbA confer viability to 3-deoxy-d-manno-oct-2-ulosonic acid-depleted Escherichia coli.

Mamat U, Meredith TC, Aggarwal P, Kühl A, Kirchhoff P, Lindner B, Hanuszkiewicz A, Sun J, Holst O, Woodard RW.

Mol Microbiol. 2008 Feb;67(3):633-48. Epub 2007 Dec 18.

31.

Modification of lipopolysaccharide with colanic acid (M-antigen) repeats in Escherichia coli.

Meredith TC, Mamat U, Kaczynski Z, Lindner B, Holst O, Woodard RW.

J Biol Chem. 2007 Mar 16;282(11):7790-8. Epub 2007 Jan 16.

32.

Redefining the requisite lipopolysaccharide structure in Escherichia coli.

Meredith TC, Aggarwal P, Mamat U, Lindner B, Woodard RW.

ACS Chem Biol. 2006 Feb 17;1(1):33-42.

PMID:
17163638
34.

Identification of GutQ from Escherichia coli as a D-arabinose 5-phosphate isomerase.

Meredith TC, Woodard RW.

J Bacteriol. 2005 Oct;187(20):6936-42.

35.

Escherichia coli YrbH is a D-arabinose 5-phosphate isomerase.

Meredith TC, Woodard RW.

J Biol Chem. 2003 Aug 29;278(35):32771-7. Epub 2003 Jun 12.

Supplemental Content

Loading ...
Support Center